Survival analysis for predicting fitness app user churn
View/Open
Author
Other authors
Publication date
2025-10Abstract
Background: Fitness applications are increasingly used to support physical activity and promote healthier
lifestyles. However, maintaining long-term engagement remains a major challenge, as many users discontinue
app use within weeks. While churn prediction has been studied in fitness centers or other industries, research
on digital fitness apps is still limited and often relies on static models such as logistic regression. To address
this gap, this study analyses user churn in fitness apps using survival analysis techniques to identify factors
contributing to drop out, aiming to improve user engagement and retention strategies. The study objective is
to assess the suitability of survival analysis for predicting user churn times in fitness applications.
Methods: The study analyzed data from 3,034 users of the Mammoth Hunters fitness application. Three
distinct time-range approaches were employed for survival analysis, each paired with two censoring methods.
Kaplan-Meier estimates assessed user dropout probabilities over time, supplemented by parametric survival
models and cure fraction models. Model performance was evaluated using mean absolute error, Akaike
Information Criterion (AIC), concordance index, and Cox-Snell residuals.
Results: Significant differences in retention were observed for multiple variables such as gender, activity
level, training frequency, and body fat percentage (P=0.004) across all approaches. Men, older users,
and those with higher training frequency showed longer engagement, while sedentary users and women
disengaged earlier. LogNormal parametric models achieved the best predictive performance with mean
absolute errors of 1.02, 1.94, and 3.32 weeks across time approaches. Cure models indicated that only a small
fraction of users would remain engaged indefinitely.
Conclusions: This study highlights key factors driving user churn in the Mammoth Hunters fitness app,
offering insights to help developers reduce dropout rates, enhance engagement, and improve user retention.
Applying advanced survival and cure models can improve personalization, reduce dropout rates, and support
sustainable health outcomes through digital fitness platforms.
Document Type
Article
Document version
Published version
Language
English
Keywords
Pages
14 p.
Publisher
AME Publishing
Is part of
mHealth, 2025, 11: 64
Recommended citation
This citation was generated automatically.
This item appears in the following Collection(s)
Rights
© 25 AME Publishing Company
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/


