Mostra el registre parcial de l'element

dc.contributorUniversitat Ramon Llull. La Salle
dc.contributorUniversitat de Barcelona
dc.contributorFIDMAG, Sisters Hospitallers Research Foundation
dc.contributorCIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III)
dc.contributorHospital de Sant Pau i la Santa Creu
dc.contributor.authorHeredia Lidón, Álvaro
dc.contributor.authorGarcía-Mascarell, Christian
dc.contributor.authorEcheverry Quiceno, Luis Miguel
dc.contributor.authorHostalet, Noemí
dc.contributor.authorHerrera Escartín, Daniel
dc.contributor.authorGonzález Alzate, Alejandro
dc.contributor.authorPomarol-Clotet, Edith
dc.contributor.authorFortea, Juan
dc.contributor.authorFatjó-Vilas, Mar
dc.contributor.authorMartínez-Abadías, Neus
dc.contributor.authorSevillano, Xavier
dc.date.accessioned2025-09-10T10:54:53Z
dc.date.created2024
dc.date.issued2024-10-26
dc.identifier.isbn978-3-031-75291-9ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5503
dc.description.abstractShape alterations in body organs are common pathological hallmarks of multiple disorders, making quantitative shape analysis key for obtaining diagnostic and prognostic biomarkers. In this context, Geometric Morphometrics (GM) is a powerful approach to capture subtle yet significant dysmorphologies. Since GM relies on registering landmarks on 3D anatomical structures, developing generic, automatic and accurate 3D landmarking methods is key for building high-throughput morphometric tools. This study compares state-of-the-art deep learning and template-based 3D landmarking methods using MRI datasets of faces, upper airways, and hippocampi. We evaluated these methods in terms of landmarking error and morphometric variables relative to manual annotations. Our results show that architecture-reused deep learning methods are more accurate and faster in inference than template-based techniques, particularly for anatomical structures with high shape variability, even with fewer training examples.ca
dc.format.extent15 p.ca
dc.language.isoengca
dc.publisherSpringerca
dc.relation.ispartofLecture Notes in Computer Science, Vol. 1527, pp 97-111.ca
dc.rights© Springer Nature, tots els drets reservatsca
dc.subject.otherAutomatic 3D landmarkingca
dc.subject.otherGeometric morphometricsca
dc.subject.otherMulti-view convolutional networksca
dc.subject.otherTemplate-based landmarkingca
dc.subject.otherFaceca
dc.subject.otherUpper respiratory airwaysca
dc.subject.otherHippocampusca
dc.subject.otherBiomakersca
dc.titleA critical comparison between template-based and architecture-reused deep learning methods for generic 3D landmarking of anatomical structuresca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/embargoedAccess
dc.date.embargoEnd2025-10-26T02:00:00Z
dc.embargo.terms12 mesosca
dc.subject.udc004ca
dc.subject.udc61ca
dc.subject.udc62ca
dc.identifier.doihttps://doi.org/10.1007/978-3-031-75291-9_8ca
dc.description.versioninfo:eu-repo/semantics/acceptedVersionca


Fitxers en aquest element

Aquest document conté fitxers embargats fins el dia 26-10-2025

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix