A critical comparison between template-based and architecture-reused deep learning methods for generic 3D landmarking of anatomical structures
Ver/Abrir
Este documento contiene ficheros embargados hasta el dia 26-10-2025
Autor/a
Otros/as autores/as
Fecha de publicación
2024-10-26ISBN
978-3-031-75291-9
Resumen
Shape alterations in body organs are common pathological hallmarks of multiple disorders, making quantitative shape analysis key for obtaining diagnostic and prognostic biomarkers. In this context, Geometric Morphometrics (GM) is a powerful approach to capture subtle yet significant dysmorphologies. Since GM relies on registering landmarks on 3D anatomical structures, developing generic, automatic and accurate 3D landmarking methods is key for building high-throughput morphometric tools. This study compares state-of-the-art deep learning and template-based 3D landmarking methods using MRI datasets of faces, upper airways, and hippocampi. We evaluated these methods in terms of landmarking error and morphometric variables relative to manual annotations. Our results show that architecture-reused deep learning methods are more accurate and faster in inference than template-based techniques, particularly for anatomical structures with high shape variability, even with fewer training examples.
Tipo de documento
Artículo
Versión del documento
Versión aceptada
Lengua
Inglés
Materias (CDU)
004 - Informática
61 - Medicina
62 - Ingeniería. Tecnología
Palabras clave
Páginas
15 p.
Publicado por
Springer
Publicado en
Lecture Notes in Computer Science, Vol. 1527, pp 97-111.
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© Springer Nature, tots els drets reservats