A critical comparison between template-based and architecture-reused deep learning methods for generic 3D landmarking of anatomical structures
Visualitza/Obre
Aquest document conté fitxers embargats fins el dia 26-10-2025
Autor/a
Altres autors/es
Data de publicació
2024-10-26ISBN
978-3-031-75291-9
Resum
Shape alterations in body organs are common pathological hallmarks of multiple disorders, making quantitative shape analysis key for obtaining diagnostic and prognostic biomarkers. In this context, Geometric Morphometrics (GM) is a powerful approach to capture subtle yet significant dysmorphologies. Since GM relies on registering landmarks on 3D anatomical structures, developing generic, automatic and accurate 3D landmarking methods is key for building high-throughput morphometric tools. This study compares state-of-the-art deep learning and template-based 3D landmarking methods using MRI datasets of faces, upper airways, and hippocampi. We evaluated these methods in terms of landmarking error and morphometric variables relative to manual annotations. Our results show that architecture-reused deep learning methods are more accurate and faster in inference than template-based techniques, particularly for anatomical structures with high shape variability, even with fewer training examples.
Tipus de document
Article
Versió del document
Versió acceptada
Llengua
Anglès
Matèries (CDU)
004 - Informàtica
61 - Medicina
62 - Enginyeria. Tecnologia
Paraules clau
Pàgines
15 p.
Publicat per
Springer
Publicat a
Lecture Notes in Computer Science, Vol. 1527, pp 97-111.
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© Springer Nature, tots els drets reservats