Landmark anything: Multi-view consensus convolutional networks applied to the 3D landmarking of anatomical structures
Ver/Abrir
Autor/a
Otros/as autores/as
Fecha de publicación
2024ISBN
978-1-64368-543-4
Resumen
As shape alterations in three-dimensional biological structures are associated to numerous pathological processes, quantitative shape analysis for obtaining phenotypic biomarkers of diagnostic potential has become a prominent research area. In this context, the automatic detection of landmarks on 3D anatomical structures is crucial for developing high-throughput phenotyping tools. This study evaluates the performance of multi-view consensus convolutional networks – originally developed for facial landmarking– in automatically detecting landmarks on three different 3D anatomical structures: the face, the upper respiratory airways and the brain hippocampi. Leveraging magnetic resonance imaging datasets, we trained multiple models and assessed their accuracy against manual annotations, while analyzing the impact of different network hyperparameters on the results.
Tipo de documento
Artículo
Versión del documento
Versión publicada
Lengua
Inglés
Materias (CDU)
004 - Informática
61 - Medicina
62 - Ingeniería. Tecnología
Palabras clave
Páginas
4 p.
Publicado por
IOS Press
Publicado en
Proceedings of the 26th International Conference of the Catalan Association for Artificial Intelligence
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/