Landmark anything: Multi-view consensus convolutional networks applied to the 3D landmarking of anatomical structures
Visualitza/Obre
Autor/a
Altres autors/es
Data de publicació
2024ISBN
978-1-64368-543-4
Resum
As shape alterations in three-dimensional biological structures are associated to numerous pathological processes, quantitative shape analysis for obtaining phenotypic biomarkers of diagnostic potential has become a prominent research area. In this context, the automatic detection of landmarks on 3D anatomical structures is crucial for developing high-throughput phenotyping tools. This study evaluates the performance of multi-view consensus convolutional networks – originally developed for facial landmarking– in automatically detecting landmarks on three different 3D anatomical structures: the face, the upper respiratory airways and the brain hippocampi. Leveraging magnetic resonance imaging datasets, we trained multiple models and assessed their accuracy against manual annotations, while analyzing the impact of different network hyperparameters on the results.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Matèries (CDU)
004 - Informàtica
61 - Medicina
62 - Enginyeria. Tecnologia
Paraules clau
Pàgines
4 p.
Publicat per
IOS Press
Publicat a
Proceedings of the 26th International Conference of the Catalan Association for Artificial Intelligence
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc/4.0/