Mostra el registre parcial de l'element
Landmark anything: Multi-view consensus convolutional networks applied to the 3D landmarking of anatomical structures
dc.contributor | Universitat Ramon Llull. La Salle | |
dc.contributor | Universitat de Barcelona | |
dc.contributor | FIDMAG, Sisters Hospitallers Research Foundation | |
dc.contributor | CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III) | |
dc.contributor | Hospital de Sant Pau i la Santa Creu | |
dc.contributor.author | Heredia Lidón, Álvaro | |
dc.contributor.author | García-Mascarell, Christian | |
dc.contributor.author | Echeverry Quiceno, Luis Miguel | |
dc.contributor.author | Herrera Escartín, Daniel | |
dc.contributor.author | Fortea, Juan | |
dc.contributor.author | Pomarol-Clotet, Edith | |
dc.contributor.author | Fatjó-Vilas, Mar | |
dc.contributor.author | Martínez-Abadías, Neus | |
dc.contributor.author | Sevillano, Xavier | |
dc.date.accessioned | 2025-09-10T10:54:19Z | |
dc.date.available | 2025-09-10T10:54:19Z | |
dc.date.created | 2024 | |
dc.date.issued | 2024 | |
dc.identifier.isbn | 978-1-64368-543-4 | ca |
dc.identifier.uri | http://hdl.handle.net/20.500.14342/5501 | |
dc.description.abstract | As shape alterations in three-dimensional biological structures are associated to numerous pathological processes, quantitative shape analysis for obtaining phenotypic biomarkers of diagnostic potential has become a prominent research area. In this context, the automatic detection of landmarks on 3D anatomical structures is crucial for developing high-throughput phenotyping tools. This study evaluates the performance of multi-view consensus convolutional networks – originally developed for facial landmarking– in automatically detecting landmarks on three different 3D anatomical structures: the face, the upper respiratory airways and the brain hippocampi. Leveraging magnetic resonance imaging datasets, we trained multiple models and assessed their accuracy against manual annotations, while analyzing the impact of different network hyperparameters on the results. | ca |
dc.format.extent | 4 p. | ca |
dc.language.iso | eng | ca |
dc.publisher | IOS Press | ca |
dc.relation.ispartof | Proceedings of the 26th International Conference of the Catalan Association for Artificial Intelligence | ca |
dc.rights | © L'autor/a | ca |
dc.rights | Attribution-NonCommercial 4.0 International | ca |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject.other | Automatic 3D landmarking | ca |
dc.subject.other | Multi-view convolutional networks | ca |
dc.subject.other | Face | ca |
dc.subject.other | Upper respiratory airways | ca |
dc.subject.other | Hippocampus | ca |
dc.subject.other | Biomakers | ca |
dc.title | Landmark anything: Multi-view consensus convolutional networks applied to the 3D landmarking of anatomical structures | ca |
dc.type | info:eu-repo/semantics/article | ca |
dc.rights.accessLevel | info:eu-repo/semantics/openAccess | |
dc.embargo.terms | cap | ca |
dc.subject.udc | 004 | ca |
dc.subject.udc | 61 | ca |
dc.subject.udc | 62 | ca |
dc.identifier.doi | https://doi.org/:10.3233/FAIA240438 | ca |
dc.description.version | info:eu-repo/semantics/publishedVersion | ca |