Mostra el registre parcial de l'element

dc.contributorUniversitat Ramon Llull. Esade
dc.contributor.authorSaiz, Miguel
dc.contributor.authorLopez-Lopez, David
dc.contributor.authorCalvet Liñán, Laura
dc.contributor.authorJuan, Angel A.
dc.date.accessioned2026-02-09T19:09:20Z
dc.date.available2026-02-09T19:09:20Z
dc.date.issued2025-06-24
dc.identifier.issn0969-6016ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5921
dc.description.abstractIn response to the increasing complexity of modern products, dynamic markets, and intensified competition, project-based organizations are actively seeking methodologies to efficiently manage their expanding project portfolios. This paper analyzes the project portfolio selection problem in uncertain environments. Despite recent advances in the field, there is a pressing need for decision-making frameworks that blend optimization and simulation with realistic project information and portfolio constraints. Through an extensive literature review, we identify key variables critical for handling practical scenarios, such as project schedule interdependencies, duration estimations across various scenarios, baseline budget, risk registers, interproject correlations, and cost overrun correlation. To tackle the inherent stochasticity, we introduce a simheuristic algorithm that combines genetic optimization with Monte Carlo simulation. This strategy maximizes the expected value while adhering to project and portfolio constraints under a set portfolio budget reliability level. This approach provides decision-makers with a powerful tool for enhancing project selection processes, promoting upfront planning, improving risk management, and the achievement of strategic goals. The performance of this approach is validated against deterministic methodologies, such as employing a mixed-integer linear programming solver in stochastic environments, demonstrating its effectiveness and practical applicability.ca
dc.format.extent33 p.ca
dc.language.isoengca
dc.publisherJohn Wiley & Sons Ltd.ca
dc.relation.ispartofInternational Transactions in Operational Researchca
dc.rights© L'autor/aca
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherGenetic algorithmsca
dc.subject.otherProject-based organizationsca
dc.subject.otherProject portfolio selectionca
dc.subject.otherSimheuristicsca
dc.titleA genetic algorithm simheuristic for solving the stochastic project portfolio selection problem with portfolio reliability constraintsca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.identifier.doihttps://doi.org/10.1111/itor.70064ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc-nd/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix