Mostra el registre parcial de l'element

dc.contributorUniversitat Ramon Llull. Facultat de Ciències de la Salut Blanquerna
dc.contributorUniversitat Ramon Llull. Facultat de Psicologia, Ciències de l’Educació i de l’Esport Blanquerna
dc.contributor.authorFuente-Vidal, Andrea
dc.contributor.authorPrat, Roger
dc.contributor.authorArribas-Marín, Juan Manuel
dc.contributor.authorBastidas Jossa, Oscar Javier
dc.contributor.authorGuerra-Balic, Myriam
dc.contributor.authorGarcia-Zapirain, Begonya
dc.contributor.authorMontane, Joel
dc.contributor.authorJerez-Roig, Javier
dc.date.accessioned2026-01-20T11:36:09Z
dc.date.available2026-01-20T11:36:09Z
dc.date.created2025-02
dc.date.issued2026-01
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5821
dc.description.abstractBackground: Mobile health (mHealth) apps are increasingly being used to promote physical activity (PA) and can support exercise uptake and maintenance. Despite their potential, these tools face high dropout rates and inconsistent adherence, posing a significant challenge. Understanding how users engage with fitness apps is essential for improving user experience and health outcomes. Objective: This study aims to analyze user behavior patterns in the Mammoth Hunters (MH) fitness app (Mammoth Hunters SL), focusing on retention (days from registration to user’s last recorded training session), average weekly training frequency, and adherence (alignment between planned and actual training). We examined how these outcomes are influenced by sociodemographic, motivational, and other variables. Methods: This cross-sectional study involved 2771 Mammoth Hunters app users. In a subsample (n=289), training data were complemented by motivational data acquired through online surveying via an ad-hoc scale (internal consistency >0.83) based on the self-determination theory (SDT). Descriptive statistics and nonparametric tests (Kruskal-Wallis, Dunn post-hoc, and Spearman correlation) were used to assess correlation between sociodemographic, motivation, and training behavior variables. Results: Mean retention (days) was significantly higher among males than females (135 vs 109, respectively; P<.01), users in the subscription vs free plan (154 vs 81; P<.001), active or very active individuals vs inactive, midbuilt vs thin body types (132 vs 120; P=.001), and those with slightly lower BMI. Users pursuing antiaging or muscle gain goals showed longer retention than those aiming to lose weight (gain: 132, antiaging: 128, lose weight: 116; P<.001). Average weekly frequency (sessions per week) of training was statistically significantly different by sex (male: 1.9 vs female: 1.8; P=.04), body type (thin: 1.96 vs mid: 1.77; P=.04), activity level (very active: 2.05 vs inactive: 1.83; P=.04), and motivation type (extrinsic introjected motivation correlated positively: r=0.17; P<.05), but did not correlate with perceived difficulty or fitness goals. Adherence, defined as actual vs targeted training frequency, was only significantly different among body types, with thin users showing higher adherence than the midbuilt group (57% vs 52.1%; P=.02). Intrinsic motivation showed a positive correlation with retention (r=0.19; P=.002), as did identified motivation (r=0.12; P<.05). Conclusions: This study shows that retention is influenced by demographic factors, with males, subscribers, previously active, midbuilds, those aiming to gain muscle, and individuals with autonomous types (ie, intrinsic and identified) of motivation displaying greater long-term participation. These findings provide valuable preliminary insight into the complexities of exercise training behavior in apps. They suggest that training frequency, retention, and adherence do not respond to the same factors. App developers, researchers, and trainers should assess these variables separately and develop strategies accordingly.ca
dc.format.extent22 p.ca
dc.language.isoengca
dc.publisherJMIR Publicationsca
dc.relation.ispartofJMIR Mhealth and Uhealth, 2026, 14: e72201ca
dc.rights© L'autor/aca
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherCondició físicaca
dc.subject.otherAplicacions mòbilsca
dc.subject.otherExercicica
dc.subject.otherActivitat físicaca
dc.subject.otherAdherència a l'exercicica
dc.subject.otherRetencióca
dc.subject.otherMotivació (Psicologia)ca
dc.subject.othermHealthca
dc.titleAnalysis of training behavior in users of a fitness app: Cross-sectional studyca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.identifier.doihttps://doi.org/10.2196/72201ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/ACM/Proyectos Investigación ACM/ACM2022_25ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/ACM/Proyectos Investigación ACM/ACM2023_19ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix