Mostrar el registro sencillo del ítem

dc.contributorUniversitat Ramon Llull. La Salle
dc.contributorUniversitat de Barcelona
dc.contributorFIDMAG, Sisters Hospitallers Research Foundation
dc.contributorCIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III)
dc.contributorHospital de Sant Pau i la Santa Creu
dc.contributor.authorHeredia Lidón, Álvaro
dc.contributor.authorGarcía-Mascarell, Christian
dc.contributor.authorEcheverry Quiceno, Luis Miguel
dc.contributor.authorHerrera Escartín, Daniel
dc.contributor.authorFortea, Juan
dc.contributor.authorPomarol-Clotet, Edith
dc.contributor.authorFatjó-Vilas, Mar
dc.contributor.authorMartínez-Abadías, Neus
dc.contributor.authorSevillano, Xavier
dc.date.accessioned2025-09-10T10:54:19Z
dc.date.available2025-09-10T10:54:19Z
dc.date.created2024
dc.date.issued2024
dc.identifier.isbn978-1-64368-543-4ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5501
dc.description.abstractAs shape alterations in three-dimensional biological structures are associated to numerous pathological processes, quantitative shape analysis for obtaining phenotypic biomarkers of diagnostic potential has become a prominent research area. In this context, the automatic detection of landmarks on 3D anatomical structures is crucial for developing high-throughput phenotyping tools. This study evaluates the performance of multi-view consensus convolutional networks – originally developed for facial landmarking– in automatically detecting landmarks on three different 3D anatomical structures: the face, the upper respiratory airways and the brain hippocampi. Leveraging magnetic resonance imaging datasets, we trained multiple models and assessed their accuracy against manual annotations, while analyzing the impact of different network hyperparameters on the results.ca
dc.format.extent4 p.ca
dc.language.isoengca
dc.publisherIOS Pressca
dc.relation.ispartofProceedings of the 26th International Conference of the Catalan Association for Artificial Intelligenceca
dc.rights© L'autor/aca
dc.rightsAttribution-NonCommercial 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.otherAutomatic 3D landmarkingca
dc.subject.otherMulti-view convolutional networksca
dc.subject.otherFaceca
dc.subject.otherUpper respiratory airwaysca
dc.subject.otherHippocampusca
dc.subject.otherBiomakersca
dc.titleLandmark anything: Multi-view consensus convolutional networks applied to the 3D landmarking of anatomical structuresca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc004ca
dc.subject.udc61ca
dc.subject.udc62ca
dc.identifier.doihttps://doi.org/:10.3233/FAIA240438ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir