Show simple item record

dc.contributorUniversitat Ramon Llull. Esade
dc.contributor.authorMenkveld, Albert
dc.contributor.authorDreber, Anna
dc.contributor.authorDumitrescu, Ariadna
dc.date.accessioned2025-06-17T11:52:59Z
dc.date.available2025-06-17T11:52:59Z
dc.date.issued2021-11-23
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5320
dc.description.abstractIn statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population pa- rameters. In science, evidence is generated to test hypotheses in an evidence- generating process (EGP). We claim that EGP variation across researchers adds uncertainty—nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.ca
dc.format.extent52ca
dc.language.isoengca
dc.publisherSSRNca
dc.rights© L'autor/aca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherStatisticsca
dc.titleNonstandard errorsca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.identifier.doihttp://dx.doi.org/10.2139/ssrn.3961574
dc.description.versioninfo:eu-repo/semantics/acceptedVersionca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

© L'autor/a
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint