A Scalable and Efficient Iterative Method for Copying Machine Learning Classifiers
Otros/as autores/as
Fecha de publicación
2023ISSN
1532-4435
Resumen
Differential replication through copying refers to the process of replicating the decision behavior of a machine learning model using another model that possesses enhanced features and attributes. This process is relevant when external constraints limit the performance of an industrial predictive system. Under such circumstances, copying enables the retention of original prediction capabilities while adapting to new demands. Previous research has focused on the single-pass implementation for copying. This paper introduces a novel sequential approach that significantly reduces the amount of computational resources needed to train or maintain a copy, leading to reduced maintenance costs for companies using machine learning models in production. The effectiveness of the sequential approach is demonstrated through experiments with synthetic and real-world datasets, showing significant reductions in time and resources, while maintaining or improving accuracy.
Tipo de documento
Artículo
Versión del documento
Versión publicada
Lengua
Inglés
Palabras clave
Sustainable AI
Páginas
34 p.
Publicado por
Microtome Publishing
Publicado en
Journal of Machine Learning Research
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/