Automatic tutoring system to support cross-disciplinary training in Big Data
Ver/Abrir
Autor/a
Solé Beteta, Xavier
Navarro Martín, Joan
Vernet Bellet, David
Zaballos Diego, Agustín
Fonseca Escudero, David
Briones Delgado, Alan
Otros/as autores/as
Universitat Ramon Llull. La Salle
Fecha de publicación
2021-02Resumen
During the last decade, Big Data has emerged as a powerful alternative to address latent challenges in scalable data management. The ever-growing amount and rapid evolution of tools, techniques, and technologies associated to Big Data require a broad skill set and deep knowledge of several domains—ranging from engineering to business, including computer science, networking, or analytics among others—which complicate the conception and deployment of academic programs and methodologies able to effectively train students in this discipline. The purpose of this paper is to propose a learning and teaching framework committed to train masters’ students in Big Data by conceiving an intelligent tutoring system aimed to (1) automatically tracking students’ progress, (2) effectively exploiting the diversity of their backgrounds, and (3) assisting the teaching staff on the course operation. Obtained results endorse the feasibility of this proposal and encourage practitioners to use this approach in other domains.
Tipo de documento
Artículo
Versión aceptada
Lengua
English
Materias (CDU)
004 - Informática
378 - Enseñanza superior. Universidades
62 - Ingeniería. Tecnología
Palabras clave
Ensenyament universitari
Dades massives
Páginas
24 p.
Publicado por
Springer
Publicado en
The Journal of Supercomputing, 2020, 1818-1852
Número del acuerdo de la subvención
info:eu-repo/grantAgreement/SUR del DEC/SGR/2017-SGR-934
info:eu-repo/grantAgreement/SUR del DEC/SGR/2017-SGR-977
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a. Tots el drets reservats