Automatic tutoring system to support cross-disciplinary training in Big Data
Visualitza/Obre
Autor/a
Solé Beteta, Xavier
Navarro Martín, Joan
Vernet Bellet, David
Zaballos Diego, Agustín
Fonseca Escudero, David
Briones Delgado, Alan
Altres autors/es
Universitat Ramon Llull. La Salle
Data de publicació
2021-02Resum
During the last decade, Big Data has emerged as a powerful alternative to address latent challenges in scalable data management. The ever-growing amount and rapid evolution of tools, techniques, and technologies associated to Big Data require a broad skill set and deep knowledge of several domains—ranging from engineering to business, including computer science, networking, or analytics among others—which complicate the conception and deployment of academic programs and methodologies able to effectively train students in this discipline. The purpose of this paper is to propose a learning and teaching framework committed to train masters’ students in Big Data by conceiving an intelligent tutoring system aimed to (1) automatically tracking students’ progress, (2) effectively exploiting the diversity of their backgrounds, and (3) assisting the teaching staff on the course operation. Obtained results endorse the feasibility of this proposal and encourage practitioners to use this approach in other domains.
Tipus de document
Article
Versió acceptada
Llengua
English
Matèries (CDU)
004 - Informàtica
378 - Ensenyament superior. Universitats
62 - Enginyeria. Tecnologia
Paraules clau
Ensenyament universitari
Dades massives
Pàgines
24 p.
Publicat per
Springer
Publicat a
The Journal of Supercomputing, 2020, 1818-1852
Número de l'acord de la subvenció
info:eu-repo/grantAgreement/SUR del DEC/SGR/2017-SGR-934
info:eu-repo/grantAgreement/SUR del DEC/SGR/2017-SGR-977
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© L'autor/a. Tots el drets reservats