HMM-based Spanish speech synthesis using CBR as F0 estimator
Visualitza/Obre
Autor/a
Gonzalvo Fructuoso, Xavier
Iriondo Sanz, Ignasi
Socoró Carrié, Joan Claudi
Alías Pujol, Francesc
Monzo Sánchez, Carlos
Altres autors/es
Universitat Ramon Llull. La Salle
Data de publicació
2007-05Resum
Hidden Markov Models based text-to-speech (HMM-TTS) syn thesis is a technique for generating speech from trained statisti cal models where spectrum, pitch and durations of basic speech
units are modelled altogether. The aim of this work is to de scribe a Spanish HMM-TTS system using CBR as a F0 esti mator, analysing its performance objectively and subjectively.
The experiments have been conducted on a reliable labelled
speech corpus, whose units have been clustered using contex tual factors according to the Spanish language. The results
show that the CBR-based F0 estimation is capable of improving
the HMM-based baseline performance when synthesizing non declarative short sentences and reduced contextual information
is available.
Tipus de document
Objecte de conferència
Llengua
English
Matèries (CDU)
62 - Enginyeria. Tecnologia
Paraules clau
Processament de la parla
Anàlisi prosòdica (Lingüística)
Pàgines
4 p.
Publicat per
ITRW on Nonlinear Speech Processing, Paris, 22-25 of May 2007
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© International Speech Communication Association. Tots els drets reservats