HMM-based Spanish speech synthesis using CBR as F0 estimator
Ver/Abrir
Autor/a
Gonzalvo Fructuoso, Xavier
Iriondo Sanz, Ignasi
Socoró Carrié, Joan Claudi
Alías Pujol, Francesc
Monzo Sánchez, Carlos
Otros/as autores/as
Universitat Ramon Llull. La Salle
Fecha de publicación
2007-05Resumen
Hidden Markov Models based text-to-speech (HMM-TTS) syn thesis is a technique for generating speech from trained statisti cal models where spectrum, pitch and durations of basic speech
units are modelled altogether. The aim of this work is to de scribe a Spanish HMM-TTS system using CBR as a F0 esti mator, analysing its performance objectively and subjectively.
The experiments have been conducted on a reliable labelled
speech corpus, whose units have been clustered using contex tual factors according to the Spanish language. The results
show that the CBR-based F0 estimation is capable of improving
the HMM-based baseline performance when synthesizing non declarative short sentences and reduced contextual information
is available.
Tipo de documento
Objeto de conferencia
Lengua
English
Materias (CDU)
62 - Ingeniería. Tecnología
Palabras clave
Processament de la parla
Anàlisi prosòdica (Lingüística)
Páginas
4 p.
Publicado por
ITRW on Nonlinear Speech Processing, Paris, 22-25 of May 2007
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© International Speech Communication Association. Tots els drets reservats