Feature Diversity in Cluster Ensembles for Robust Document Clustering
Ver/Abrir
Autor/a
Sevillano Domínguez, Xavier
Cobo Rodríguez, Germán
Alías Pujol, Francesc
Socoró Carrié, Joan Claudi
Otros/as autores/as
Universitat Ramon Llull. La Salle
Fecha de publicación
2006-08Resumen
The performance of document clustering systems depends
on employing optimal text representations, which are not
only difficult to determine beforehand, but also may vary
from one clustering problem to another. As a first step towards building robust document clusterers, a strategy based
on feature diversity and cluster ensembles is presented in this
work. Experiments conducted on a binary clustering problem show that our method is robust to near-optimal model
order selection and able to detect constructive interactions
between different document representations in the test bed.
Tipo de documento
Objeto de conferencia
Lengua
English
Materias (CDU)
004 - Informática
62 - Ingeniería. Tecnología
Palabras clave
Intel·ligència artificial -- Aplicacions a l'enginyeria
Algorismes
Páginas
2 p.
Publicado por
29th annual international ACM SIGIR conference on Research and development in information retrieval, Seattle, 6-11 of August 2006
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© Association for Computing Machinery. Tots els drets reservats