Show simple item record

dc.contributorUniversitat Ramon Llull. La Salle
dc.contributor.authorSevillano, Xavier
dc.contributor.authorCobo Rodríguez, Germán
dc.contributor.authorAlías-Pujol, Francesc
dc.contributor.authorSocoró, Joan Claudi
dc.date.accessioned2021-06-01T19:50:00Z
dc.date.accessioned2023-07-13T09:53:08Z
dc.date.available2021-06-01T19:50:00Z
dc.date.available2023-07-13T09:53:08Z
dc.date.created2006-08
dc.date.issued2006-08
dc.identifier.urihttp://hdl.handle.net/20.500.14342/2971
dc.description.abstractThe performance of document clustering systems depends on employing optimal text representations, which are not only difficult to determine beforehand, but also may vary from one clustering problem to another. As a first step towards building robust document clusterers, a strategy based on feature diversity and cluster ensembles is presented in this work. Experiments conducted on a binary clustering problem show that our method is robust to near-optimal model order selection and able to detect constructive interactions between different document representations in the test bed.eng
dc.format.extent2 p.ca
dc.language.isoengca
dc.publisher29th annual international ACM SIGIR conference on Research and development in information retrieval, Seattle, 6-11 of August 2006ca
dc.rights© Association for Computing Machinery. Tots els drets reservats
dc.sourceRECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.otherIntel·ligència artificial -- Aplicacions a l'enginyeriaca
dc.subject.otherAlgorismesca
dc.titleFeature Diversity in Cluster Ensembles for Robust Document Clusteringca
dc.typeinfo:eu-repo/semantics/conferenceObjectca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc004
dc.subject.udc62


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint