Mostrar el registro sencillo del ítem

dc.contributorUniversitat Ramon Llull. La Salle
dc.contributorInstitut de Recerca Sant Joan de Déu
dc.contributorCIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III)
dc.contributorUniversitat Autònoma de Barcelona
dc.contributor.authorRodeiro, Jordi
dc.contributor.authorPerez Anton, Mariona
dc.contributor.authorHuerta-Ramos, Elena
dc.contributor.authorGolobardes Ribé, Elisabet
dc.date.accessioned2026-01-09T07:11:38Z
dc.date.available2026-01-09T07:11:38Z
dc.date.issued2025
dc.identifier.isbn978-1-64368-618-ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5751
dc.description.abstractAutism Spectrum Disorder (ASD) presents diverse and complex diagnostic challenges, traditionally reliant on subjective behavioral assessments. Artificial Intelligence (AI) offers a transformative approach to enhancing ASD diagnosis by enabling objective, data-driven insights from multimodal sources. This paper examines the breadth of available datasets, including neuroimaging, genetics, behavioral assessments, and electronic health records (EHRs), and provides a comprehensive review of current AI methodologies used in ASD diagnosis, including traditional machine learning, deep learning architectures, and ensemble techniques. The paper explores the parallel evolution of data modalities and AI techniques, as well as critical issues such as data heterogeneity, privacy concerns, and standardization gaps. Key technical challenges—such as model generalizability, explainability, and ethical considerations surrounding bias and transparency—are also addressed. To assess real-world applicability, we present a preliminary study using structured EHR data from Parc Sanitari Sant Joan de Déu. Our findings reveal limited predictive power from structured variables alone. Therefore, future work will focus on mining clinical insights by applying Natural Language Processing techniques to the unstructured EHR data available. This work offers a roadmap for advancing AI-driven ASD diagnosis toward more robust, interpretable, and clinically relevant systems.ca
dc.format.extent15 p.ca
dc.language.isoengca
dc.publisherIOS Pressca
dc.relation.ispartofArtificial Intelligence Research and Development: Proceedings of the 27th International Conference of the Catalan Association for Artificial Intelligenceca
dc.rights© L'autor/aca
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.otherData scienceca
dc.subject.otherArtificial intelligenceca
dc.subject.otherNatural language processingca
dc.subject.otherClinical decision supportca
dc.subject.otherAI applied to healthca
dc.subject.otherAutism spectrum disorderca
dc.subject.otherElectronic health recordsca
dc.subject.otherMedical data miningca
dc.titleArtificial intelligence for autism diagnosis: Algorithms, data and challengesca
dc.typeinfo:eu-repo/semantics/bookPartca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc004ca
dc.subject.udc61ca
dc.subject.udc62ca
dc.identifier.doihttps://doi.org/10.3233/FAIA250616ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir