CODE-ACCORD: A corpus of building regulatory data for rule generation towards automatic compliance checking
Ver/Abrir
Autor/a
Otros/as autores/as
Fecha de publicación
2025-01-29ISSN
2052-4463
Resumen
Automatic Compliance Checking (ACC) within the Architecture, Engineering, and Construction (AEC) sector necessitates automating the interpretation of building regulations to achieve its full potential. Converting textual rules into machine-readable formats is challenging due to the complexities of natural language and the scarcity of resources for advanced Machine Learning (ML). Addressing these challenges, we introduce CODE-ACCORD, a dataset of 862 sentences from the building regulations of England and Finland. Only the self-contained sentences, which express complete rules without needing additional context, were considered as they are essential for ACC. Each sentence was manually annotated with entities and relations by a team of 12 annotators to facilitate machine-readable rule generation, followed by careful curation to ensure accuracy. The final dataset comprises 4,297 entities and 4,329 relations across various categories, serving as a robust ground truth. CODE-ACCORD supports a range of ML and Natural Language Processing (NLP) tasks, including text classification, entity recognition, and relation extraction. It enables applying recent trends, such as deep neural networks and large language models, to ACC.
Tipo de documento
Artículo
Versión del documento
Versión publicada
Lengua
Inglés
Materias (CDU)
62 - Ingeniería. Tecnología
620 - Ensayo de materiales. Materiales comerciales. Economía de la energía
69 - Materiales de construcción. Prácticas y procedimientos de construcción
72 - Arquitectura
Palabras clave
Páginas
14 p.
Publicado por
Springer Nature
Publicado en
Scientific Data, 12, 170 (2025)
Citación recomendada
Esta citación se ha generado automáticamente.
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/


