Mostra el registre parcial de l'element
CODE-ACCORD: A corpus of building regulatory data for rule generation towards automatic compliance checking
| dc.contributor | Universitat Ramon Llull. La Salle | |
| dc.contributor | Lancaster University | |
| dc.contributor | Birmingham City University | |
| dc.contributor | Fraunhofer Institute for Building Physics IBP | |
| dc.contributor | Jönköping University | |
| dc.contributor | Institut Henri Fayol | |
| dc.contributor | Université de Lorraine | |
| dc.contributor.author | Hettiarachchi, Hansi | |
| dc.contributor.author | Dridi, Amna | |
| dc.contributor.author | Gaber, Mohamed | |
| dc.contributor.author | Parsafard, Pouyan | |
| dc.contributor.author | Bocaneala, Nicoleta | |
| dc.contributor.author | Breitenfelder, Katja | |
| dc.contributor.author | Costa, Gonçal | |
| dc.contributor.author | Hedblom, Maria Magdalena | |
| dc.contributor.author | JUGANARU-MATHIEU, Mihaela | |
| dc.contributor.author | Mecharnia, Thamer | |
| dc.contributor.author | park, sumee | |
| dc.contributor.author | Tan, He | |
| dc.contributor.author | Tawil, Abdel-Rahman | |
| dc.contributor.author | Vakaj, Edlira | |
| dc.date.accessioned | 2025-10-03T05:59:18Z | |
| dc.date.available | 2025-10-03T05:59:18Z | |
| dc.date.created | 2024-07-01 | |
| dc.date.issued | 2025-01-29 | |
| dc.identifier.issn | 2052-4463 | ca |
| dc.identifier.uri | http://hdl.handle.net/20.500.14342/5562 | |
| dc.description.abstract | Automatic Compliance Checking (ACC) within the Architecture, Engineering, and Construction (AEC) sector necessitates automating the interpretation of building regulations to achieve its full potential. Converting textual rules into machine-readable formats is challenging due to the complexities of natural language and the scarcity of resources for advanced Machine Learning (ML). Addressing these challenges, we introduce CODE-ACCORD, a dataset of 862 sentences from the building regulations of England and Finland. Only the self-contained sentences, which express complete rules without needing additional context, were considered as they are essential for ACC. Each sentence was manually annotated with entities and relations by a team of 12 annotators to facilitate machine-readable rule generation, followed by careful curation to ensure accuracy. The final dataset comprises 4,297 entities and 4,329 relations across various categories, serving as a robust ground truth. CODE-ACCORD supports a range of ML and Natural Language Processing (NLP) tasks, including text classification, entity recognition, and relation extraction. It enables applying recent trends, such as deep neural networks and large language models, to ACC. | ca |
| dc.format.extent | 14 p. | ca |
| dc.language.iso | eng | ca |
| dc.publisher | Springer Nature | ca |
| dc.relation.ispartof | Scientific Data, 12, 170 (2025) | ca |
| dc.rights | © L'autor/a | ca |
| dc.rights | Attribution 4.0 International | * |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject.other | CODE-ACCORD | ca |
| dc.subject.other | Arquitectura | ca |
| dc.subject.other | Construcció | ca |
| dc.title | CODE-ACCORD: A corpus of building regulatory data for rule generation towards automatic compliance checking | ca |
| dc.type | info:eu-repo/semantics/article | ca |
| dc.rights.accessLevel | info:eu-repo/semantics/openAccess | |
| dc.embargo.terms | cap | ca |
| dc.subject.udc | 62 | ca |
| dc.subject.udc | 620 | ca |
| dc.subject.udc | 69 | ca |
| dc.subject.udc | 72 | ca |
| dc.identifier.doi | https://doi.org/10.1038/s41597-024-04320-x | ca |
| dc.description.version | info:eu-repo/semantics/publishedVersion | ca |

