Mostra el registre parcial de l'element

dc.contributorUniversitat Ramon Llull. La Salle
dc.contributorLancaster University
dc.contributorBirmingham City University
dc.contributorFraunhofer Institute for Building Physics IBP
dc.contributorJönköping University
dc.contributorInstitut Henri Fayol
dc.contributorUniversité de Lorraine
dc.contributor.authorHettiarachchi, Hansi
dc.contributor.authorDridi, Amna
dc.contributor.authorGaber, Mohamed
dc.contributor.authorParsafard, Pouyan
dc.contributor.authorBocaneala, Nicoleta
dc.contributor.authorBreitenfelder, Katja
dc.contributor.authorCosta, Gonçal
dc.contributor.authorHedblom, Maria Magdalena
dc.contributor.authorJUGANARU-MATHIEU, Mihaela
dc.contributor.authorMecharnia, Thamer
dc.contributor.authorpark, sumee
dc.contributor.authorTan, He
dc.contributor.authorTawil, Abdel-Rahman
dc.contributor.authorVakaj, Edlira
dc.date.accessioned2025-10-03T05:59:18Z
dc.date.available2025-10-03T05:59:18Z
dc.date.created2024-07-01
dc.date.issued2025-01-29
dc.identifier.issn2052-4463ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5562
dc.description.abstractAutomatic Compliance Checking (ACC) within the Architecture, Engineering, and Construction (AEC) sector necessitates automating the interpretation of building regulations to achieve its full potential. Converting textual rules into machine-readable formats is challenging due to the complexities of natural language and the scarcity of resources for advanced Machine Learning (ML). Addressing these challenges, we introduce CODE-ACCORD, a dataset of 862 sentences from the building regulations of England and Finland. Only the self-contained sentences, which express complete rules without needing additional context, were considered as they are essential for ACC. Each sentence was manually annotated with entities and relations by a team of 12 annotators to facilitate machine-readable rule generation, followed by careful curation to ensure accuracy. The final dataset comprises 4,297 entities and 4,329 relations across various categories, serving as a robust ground truth. CODE-ACCORD supports a range of ML and Natural Language Processing (NLP) tasks, including text classification, entity recognition, and relation extraction. It enables applying recent trends, such as deep neural networks and large language models, to ACC.ca
dc.format.extent14 p.ca
dc.language.isoengca
dc.publisherSpringer Natureca
dc.relation.ispartofScientific Data, 12, 170 (2025)ca
dc.rights© L'autor/aca
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherCODE-ACCORDca
dc.subject.otherArquitecturaca
dc.subject.otherConstruccióca
dc.titleCODE-ACCORD: A corpus of building regulatory data for rule generation towards automatic compliance checkingca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc62ca
dc.subject.udc620ca
dc.subject.udc69ca
dc.subject.udc72ca
dc.identifier.doihttps://doi.org/10.1038/s41597-024-04320-xca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix