Mostra el registre parcial de l'element

dc.contributorUniversitat Ramon Llull. La Salle
dc.contributorUniversitat de Barcelona
dc.contributor.authorHeredia Lidón, Álvaro
dc.contributor.authorMoñux Bernal, Alejandro
dc.contributor.authorGonzález Alzate, Alejandro
dc.contributor.authorEcheverry Quiceno, Luis Miguel
dc.contributor.authorAndreu Montoriol, Mireia
dc.contributor.authorGallardo, Susanna
dc.contributor.authorCasado Rodríguez, Aroa
dc.contributor.authorEsteban, Esther
dc.contributor.authorMartínez-Abadías, Neus
dc.contributor.authorSevillano, Xavier
dc.date.accessioned2025-09-10T09:32:58Z
dc.date.created2023
dc.date.issued2025-06-25
dc.identifier.isbn978-3-031-36616-1ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5497
dc.description.abstractRecent studies in neuropsychiatry have highlighted the correlation between facial and brain dysmorphologies. One way of simultaneously analysing the brain and the face of a subject is by reconstructing a whole-head 3D model from structural magnetic resonance imaging (sMRI). However, the use of different reconstruction protocols generates undesired orthogonal rotations of the 3D models. This is a likely situation in multicentric studies that hampers the combination of data from different centers. Although the original sMRI files contain the subject orientation, it is not always possible to access this data. To solve this issue, in this work we propose a novel method to estimate the orientation of 3D heads with rotations of 90º or multiples thereof around any of the three Cartesian axes as a required step for generating a normalised dataset in terms of orientation. Our proposal creates 2D images from orthogonal projections of the 3D object, transforming orientation estimation into an image classification problem. Experimental results show that our method, using three orthographic views of the 3D head to create the projection image and ResNet50 for classification, achieves an accuracy of 99.7%, which corresponds to 0.15 mean absolute error in rotation, outperforming state-of-the-art point cloud registration methods like DeepBBS and PRNet.ca
dc.format.extent12 p.ca
dc.language.isoengca
dc.publisherSpringerca
dc.relation.ispartofLecture Notes in Computer Science, Vol. 14062, pp. 603-614ca
dc.rights© Springer Nature, tots els drets reservatsca
dc.subject.otherStructural magnetic resonance imagingca
dc.subject.other3D head orinetationca
dc.subject.otherMultiview orthographic projectionsca
dc.subject.otherImage classificationca
dc.subject.otherPoint cloud registrationca
dc.titleA geometric and morphometric methodology for evaluating low-cost 3D facial acquisition and reconstruction techniquesca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/embargoedAccess
dc.date.embargoEnd2026-06-25T02:00:00Z
dc.embargo.terms12 mesosca
dc.subject.udc004ca
dc.subject.udc61ca
dc.subject.udc62ca
dc.identifier.doihttps://doi.org/10.1007/978-3-031-36616-1_48ca
dc.description.versioninfo:eu-repo/semantics/acceptedVersionca


Fitxers en aquest element

Aquest document conté fitxers embargats fins el dia 25-06-2026

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix