Show simple item record

dc.contributorUniversitat Ramon Llull. Facultat de Ciències de la Salut Blanquerna
dc.contributor.authorGonzalez Hernandez, Ferran
dc.contributor.authorNguyen, Quang
dc.contributor.authorSmith, Victoria
dc.contributor.authorCordero Rigol, José Antonio
dc.contributor.authorBallester, Maria Rosa
dc.contributor.authorDuran, Màrius
dc.contributor.authorSolé, Albert
dc.contributor.authorChotsiri, Palang
dc.contributor.authorWattanakul, Thanaporn
dc.contributor.authorMundin, Gill
dc.contributor.authorLilaonitkul, Watjana
dc.contributor.authorStanding, Joseph F.
dc.contributor.authorKloprogge, Frank
dc.date.accessioned2025-02-26T14:33:33Z
dc.date.available2025-02-26T14:33:33Z
dc.date.created2024-04
dc.date.issued2024-10
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5052
dc.description.abstractThe development of accurate predictions for a new drug’s absorption, distribution, metabolism, and excretion profiles in the early stages of drug development is crucial due to high candidate failure rates. The absence of comprehensive, standardised, and updated pharmacokinetic (PK) repositories limits pre-clinical predictions and often requires searching through the scientific literature for PK parameter estimates from similar compounds. While text mining offers promising advancements in automatic PK parameter extraction, accurate Named Entity Recognition (NER) of PK terms remains a bottleneck due to limited resources. This work addresses this gap by introducing novel corpora and language models specifically designed for effective NER of PK parameters. Leveraging active learning approaches, we developed an annotated corpus containing over 4000 entity mentions found across the PK literature on PubMed. To identify the most effective model for PK NER, we fine-tuned and evaluated different NER architectures on our corpus. Fine-tuning BioBERT exhibited the best results, achieving a strict score of 90.37% in recognising PK parameter mentions, significantly outperforming heuristic approaches and models trained on existing corpora. To accelerate the development of end-to-end PK information extraction pipelines and improve pre-clinical PK predictions, the PK NER models and the labelled corpus were released open source at https://github.com/PKPDAI/PKNER.ca
dc.format.extent8 p.ca
dc.language.isoengca
dc.publisherSpringer Natureca
dc.relation.ispartofScientific reports, 2024, 14, 23485ca
dc.rights© L'autor/aca
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherParàmetres farmacocinèticsca
dc.subject.otherFarmacocinèticaca
dc.subject.otherLiteratura científicaca
dc.titleNamed entity recognition of pharmacokinetic parameters in the scientific literatureca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.identifier.doihttps://doi.org/10.1038/s41598-024-73338-3ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

© L'autor/a
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint