Mostrar el registro sencillo del ítem
Short-term exposure to environmental levels of nicotine and cotinine impairs visual motor response in zebrafish larvae through a similar mode of action: Exploring the potential role of zebrafish α7 nAChR
dc.contributor | Universitat Ramon Llull. IQS | |
dc.contributor.author | Bellot, Marina | |
dc.contributor.author | Manen Freixa, Leticia | |
dc.contributor.author | Prats, Eva | |
dc.contributor.author | Bedrossiantz, Juliette | |
dc.contributor.author | Barata, Carlos | |
dc.contributor.author | Gómez Canela, Cristian | |
dc.contributor.author | Antolín, Albert A. | |
dc.contributor.author | Raldúa, Demetrio | |
dc.date.accessioned | 2024-09-10T13:39:59Z | |
dc.date.available | 2024-09-10T13:39:59Z | |
dc.date.created | 2023-10-11 | |
dc.date.issued | 2023-12-14 | |
dc.identifier.issn | 1879-1026 | ca |
dc.identifier.uri | http://hdl.handle.net/20.500.14342/4405 | |
dc.description.abstract | The current view is that environmental levels of nicotine and cotinine, commonly in the ng/L range, are safe for aquatic organisms. In this study, 7 days post-fertilization zebrafish embryos have been exposed for 24 h to a range of environmental concentrations of nicotine (2.0 ng/L-2.5 μg/L) and cotinine (50 pg/L–10 μg/L), as well as to a binary mixture of these emerging pollutants. Nicotine exposure led to hyperactivity, decreased vibrational startle response and increased non-associative learning. However, the more consistent effect found for both nicotine and cotinine was a significant increase in light-off visual motor response (VMR). The effect of both pollutants on this behavior occurred through a similar mode of action, as the joint effects of the binary mixture of both chemicals were consistent with the concentration addition concept predictions. The results from docking studies suggest that the effect of nicotine and cotinine on light-off VMR could be mediated by zebrafish α7 nAChR | ca |
dc.format.extent | 11p. | ca |
dc.language.iso | eng | ca |
dc.publisher | Elsevier | ca |
dc.relation.ispartof | Science of the Total Environment | ca |
dc.rights | © L'autor/a | ca |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | ca |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.other | Nicotine | ca |
dc.subject.other | Cotinine | ca |
dc.subject.other | Fish Larvae | ca |
dc.subject.other | Behavior | ca |
dc.subject.other | Nicotine Acetylcholine Receptor | ca |
dc.title | Short-term exposure to environmental levels of nicotine and cotinine impairs visual motor response in zebrafish larvae through a similar mode of action: Exploring the potential role of zebrafish α7 nAChR | ca |
dc.type | info:eu-repo/semantics/article | ca |
dc.rights.accessLevel | info:eu-repo/semantics/openAccess | |
dc.embargo.terms | cap | ca |
dc.subject.udc | 504 | ca |
dc.identifier.doi | https://doi.org/10.1016/j.scitotenv.2023.169301 | ca |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI-MCI/PID2020-113371RB-C21 | ca |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI-MCI/PID2020-113371RB-C22 | ca |
dc.description.version | info:eu-repo/semantics/publishedVersion | ca |