Toward high performance solution retrieval in multiobjective clustering
Visualitza/Obre
Autor/a
García Piquer, Álvaro
Sancho Asensio, Andreu
Fornells Herrera, Albert
Golobardes, Elisabet
Corral Torruella, Guiomar
Teixidó Navarro, Francesc
Altres autors/es
Universitat Ramon Llull. Facultat de Turisme i Direcció Hotelera Sant Ignasi
Universitat Ramon Llull. La Salle
Institut de Ciències de l'Espai
Data de publicació
2019-10DOI
10.1016/j.ins.2015.04.041
Resum
The massive generation of unlabeled data of current industrial applications has attracted the interest of data mining practitioners. Thus, retrieving novel and useful information from these volumes of data while decreasing the costs of manipulating such amounts of information is a major issue. Multiobjective clustering algorithms are able to recognize patterns considering several objective function which is crucial in real-world situations. However, they dearth from a retrieval system for obtaining the most suitable solution, and due to the fact that the size of Pareto set can be unpractical for human experts, autonomous retrieval methods are fostered. This paper presents an automatic retrieval system for handling Pareto-based multiobjective clustering problems based on the shape of the Pareto set and the quality of the clusters. The proposed method is integrated in CAOS, a scalable and flexible framework, to test its performance. Our approach is compared to classic retrieval methods that only consider individual strategies by using a wide set of artificial and real-world datasets. This filtering approach is evaluated under large data volumes demonstrating its competence in clustering problems. Experiments support that the proposal overcomes the accuracy and significantly reduces the computational time of the solution retrieval achieved by the individual strategies
Tipus de document
Article
Versió presentada
Llengua
English
Matèries (CDU)
004 - Informàtica
Paraules clau
Informàtica tova
Algorismes genètics
Soft computing
Computer algorithms
Pàgines
33 p.
Publicat per
Elsevier
Publicat a
Information Sciences, 2015, Vol. 320, No. 1 (November)
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© Elsevier. Tots els drets reservats