Mostrar el registro sencillo del ítem

dc.contributorUniversitat Ramon Llull. La Salle
dc.contributor.authorBonet-Solà, Daniel
dc.contributor.authorAlsina-Pagès, Rosa Ma
dc.date.accessioned2021-05-07T09:16:59Z
dc.date.accessioned2023-10-02T06:40:55Z
dc.date.available2021-05-07T09:16:59Z
dc.date.available2023-10-02T06:40:55Z
dc.date.created2021-01
dc.date.issued2021-02
dc.identifier.urihttp://hdl.handle.net/20.500.14342/3407
dc.description.abstractAcoustic event detection and analysis has been widely developed in the last few years for its valuable application in monitoring elderly or dependant people, for surveillance issues, for multimedia retrieval, or even for biodiversity metrics in natural environments. For this purpose, sound source identification is a key issue to give a smart technological answer to all the aforementioned applications. Diverse types of sounds and variate environments, together with a number of challenges in terms of application, widen the choice of artificial intelligence algorithm proposal. This paper presents a comparative study on combining several feature extraction algorithms (Mel Frequency Cepstrum Coefficients (MFCC), Gammatone Cepstrum Coefficients (GTCC), and Narrow Band (NB)) with a group of machine learning algorithms (k-Nearest Neighbor (kNN), Neural Networks (NN), and Gaussian Mixture Model (GMM)), tested over five different acoustic environments. This work has the goal of detailing a best practice method and evaluate the reliability of this general-purpose algorithm for all the classes. Preliminary results show that most of the combinations of feature extraction and machine learning present acceptable results in most of the described corpora. Nevertheless, there is a combination that outperforms the others: the use of GTCC together with kNN, and its results are further analyzed for all the corpora.eng
dc.format.extent21 p.cat
dc.language.isoengcat
dc.publisherMDPIcat
dc.relation.ispartofSensors, 2021, Vol. 21, No. 4cat
dc.rightsAttribution 4.0 International
dc.rights© L'autor/a
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceRECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.otherAprenentatge automàticcat
dc.subject.otherAcústicacat
dc.titleA Comparative Survey of Feature Extraction and Machine Learning Methods in Diverse Acoustic Environmentscat
dc.typeinfo:eu-repo/semantics/articlecat
dc.typeinfo:eu-repo/semantics/publishedVersioncat
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapcat
dc.subject.udc004
dc.subject.udc531/534
dc.subject.udc62
dc.identifier.doihttps://doi.org/10.3390/s21041274cat


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir