A Comparative Survey of Feature Extraction and Machine Learning Methods in Diverse Acoustic Environments
Ver/Abrir
Otros/as autores/as
Universitat Ramon Llull. La Salle
Fecha de publicación
2021-02Resumen
Acoustic event detection and analysis has been widely developed in the last few years for its valuable application in monitoring elderly or dependant people, for surveillance issues, for multimedia retrieval, or even for biodiversity metrics in natural environments. For this purpose, sound source identification is a key issue to give a smart technological answer to all the aforementioned applications. Diverse types of sounds and variate environments, together with a number of challenges in terms of application, widen the choice of artificial intelligence algorithm proposal. This paper presents a comparative study on combining several feature extraction algorithms (Mel Frequency Cepstrum Coefficients (MFCC), Gammatone Cepstrum Coefficients (GTCC), and Narrow Band (NB)) with a group of machine learning algorithms (k-Nearest Neighbor (kNN), Neural Networks (NN), and Gaussian Mixture Model (GMM)), tested over five different acoustic environments. This work has the goal of detailing a best practice method and evaluate the reliability of this general-purpose algorithm for all the classes. Preliminary results show that most of the combinations of feature extraction and machine learning present acceptable results in most of the described corpora. Nevertheless, there is a combination that outperforms the others: the use of GTCC together with kNN, and its results are further analyzed for all the corpora.
Tipo de documento
Artículo
Versión publicada
Lengua
English
Materias (CDU)
004 - Informática
531/534 - Mecánica. Vibraciones. Acústica
62 - Ingeniería. Tecnología
Palabras clave
Aprenentatge automàtic
Acústica
Páginas
21 p.
Publicado por
MDPI
Publicado en
Sensors, 2021, Vol. 21, No. 4
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/