Simultaneous and causal appearance learning and tracking
Autor/a
Melenchón Maldonado, Javier
Iriondo Sanz, Ignasi
Meler Corretjé, Lourdes
Altres autors/es
Universitat Ramon Llull. La Salle
Data de publicació
2005-08Resum
A novel way to learn and track simultaneously the appearance of a previously non-seen face without
intrusive techniques can be found in this article. The presented approach has a causal behaviour: no future
frames are needed to process the current ones. The model used in the tracking process is refined with each
input frame thanks to a new algorithm for the simultaneous and incremental computation of the singular
value decomposition (SVD) and the mean of the data. Previously developed methods about iterative computation
of SVD are taken into account and an original way to extract the mean information from the reduced
SVD of a matrix is also considered. Furthermore, the results are produced with linear computational cost
and sublinear memory requirements with respect to the size of the data. Finally, experimental results are
included, showing the tracking performance and some comparisons between the batch and our incremental
computation of the SVD with mean information.
Tipus de document
Article
Versió publicada
Llengua
English
Matèries (CDU)
62 - Enginyeria. Tecnologia
Paraules clau
Imatges--Processament
Imatges--Processament--Tècniques digitals
Reconeixement facial (Informàtica)
Reconeixement òptic de formes
Pàgines
11 p.
Publicat per
Universitat Autònoma de Barcelona
Publicat a
Electronic letters on computer vision and image analysis, Vol. 5, No 3 (2005)
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc-nd/4.0/