Show simple item record

dc.contributorUniversitat Ramon Llull. La Salle
dc.contributor.authorArnela, Marc
dc.contributor.authorVidaña Vila, Ester
dc.contributor.authorFantinelli de Carvalho, Augusto Cesar
dc.contributor.authorMoñux Bernal, Alejandro
dc.contributor.authorVaquerizo Serrano, Jesús
dc.contributor.authorSocoró, Joan Claudi
dc.date.accessioned2025-12-11T15:26:16Z
dc.date.created2024-12-27
dc.date.issued2025-08-01
dc.identifier.issn1879-2456ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5696
dc.description.abstractReverse vending machines (RVMs) are essential for promoting waste sorting at the source by offering incentives for recycling.However, current RVMs, which primarily rely on expensive sensors such as barcode scanners and computer vision systems, face limitations including unreadable barcodes, high computational demands, and sensitivity to environmental conditions like lighting. This paper presents an alternative, cost-effective approach using acoustic sensors for waste classification, aiming to reduce the production cost of RVMs. The proposed method consists of emitting ultrasonic and audible sound waves towards the recyclable object and, by analyzing the variations in the acoustic field, an artificial intelligence system classifies the material. For doing so, the system uses the ultrasonic and audible impulse response of each item, measured using the exponential sine sweep (ESS) technique. To validate this approach, a proof-of-concept has been developed and tested in a controlled environment using a scaled replica of a reverberation chamber, designed to achieve ideal acoustic conditions. Acoustic impulse responses have been captured using ESS emitted by an omnidirectional parametric loudspeaker (OPL), which generates both ultrasonic and audible sound waves via the parametric acoustic array (PAA) effect. This setup allows for simultaneous collection of ultrasonic and audible impulse responses for each recyclable item. The collected acoustic data has then been used to train classical machine learning and deep learning models to classify the introduced material, specifically plastic, glass, cardboard, and metallic cans. Initial results show promising classification accuracy, demonstrating the potential of this acoustic technology for broader application in RVMs.ca
dc.format.extent10 p.ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofWaster Management, Vol. 2004,114934ca
dc.rights© L'autor/aca
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherUltrasoundsca
dc.subject.otherParametric acoustic arrayca
dc.subject.otherSound classificationca
dc.subject.otherMachine learningca
dc.subject.otherReverse vending machineca
dc.subject.otherpackaging wasteca
dc.titleGeneration of ultrasonic and audible sound waves for the automatic classification of packaging waste in reverse vending machinesca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/embargoedAccess
dc.date.embargoEnd2027-08-01T02:00:00Z
dc.embargo.terms24 mesosca
dc.subject.udc004ca
dc.subject.udc531/534ca
dc.subject.udc62ca
dc.identifier.doihttps://doi.org/10.1016/j.wasman.2025.114934ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/MCIN i EU/TED/TED2021-132376A-I00ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/DREU/IdC Producte/2021 PROD 00104ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/SUR del DEC/SGR/2021 SGR 01396ca
dc.description.versioninfo:eu-repo/semantics/acceptedVersionca


Files in this item

This document contains embargoed files until 2027-08-01

This item appears in the following Collection(s)

Show simple item record

© L'autor/a
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint