Show simple item record

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorGranados-Lieberman, David
dc.contributor.authorBarranco-Gutierrez, Alejandro-Israel
dc.contributor.authorLópez, Adolfo Rafael
dc.contributor.authorRostro Gonzalez, Horacio
dc.contributor.authorCano-Lara, Miroslava
dc.contributor.authorManríquez-Padilla, Carlos G.
dc.date.accessioned2025-12-04T15:07:18Z
dc.date.available2025-12-04T15:07:18Z
dc.date.issued2025-10
dc.identifier.issn2076-3417ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5662
dc.description.abstractThis study introduces a non-destructive computer vision method for estimating postharvest quality parameters of oranges, including maturity index, soluble solid content (expressed in degrees Brix), and firmness. A novel image-based descriptor, termed Citrus Color Index—Gray Level Co-occurrence Matrix Texture Features (CCI–GLCM-TF), was developed by integrating the Citrus Color Index (CCI) with texture features derived from the Gray Level Co-occurrence Matrix (GLCM). By combining contrast, correlation, energy, and homogeneity across multiscale regions of interest and applying geometric calibration to correct image acquisition distortions, the descriptor effectively captures both chromatic and structural information from RGB images. These features served as input to an Adaptive Neuro-Fuzzy Inference System (ANFIS), selected for its ability to model nonlinear relationships and gradual transitions in citrus ripening. The proposed ANFIS models achieved R-squared values greater than or equal to 0.81 and root mean square error values less than or equal to 1.1 across all quality parameters, confirming their predictive robustness. Notably, representative models (ANFIS 2, 4, 6, and 8) demonstrated superior performance, supporting the extension of this approach to full-surface exploration of citrus fruits. The results outperform methods relying solely on color features, underscoring the importance of combining spectral and textural descriptors. This work highlights the potential of the CCI–GLCM-TF descriptor, in conjunction with ANFIS, for accurate, real-time, and non-invasive assessment of citrus quality, with practical implications for automated classification, postharvest process optimization, and cost reduction in the citrus industry.ca
dc.format.extentp.25ca
dc.language.isoengca
dc.publisherMDPIca
dc.relation.ispartofApplied Sciences 2025, 15(19), 10464ca
dc.rights© L'autor/aca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherMaturityca
dc.subject.otherOrangeca
dc.subject.otherCitrus Color Index (CCI)ca
dc.subject.otherGLCM parametersca
dc.subject.otherDegree Brixca
dc.subject.otherFirmnessca
dc.subject.otherAdaptive Neuro-Fuzzy Inference System (ANFIS)ca
dc.subject.otherTaronges--Tecnologia posterior a les collitesca
dc.subject.otherVisió per ordinadorca
dc.titleNon-Destructive Classification of Sweetness and Firmness in Oranges Using ANFIS and a Novel CCI–GLCM Image Descriptorca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc004ca
dc.subject.udc634ca
dc.identifier.doihttps://doi.org/10.3390/app151910464ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

© L'autor/a
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint