Mostrar el registro sencillo del ítem

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorGarcía de la Torre, Héctor
dc.contributor.authorPérez, Marco A.
dc.contributor.authorGomez-Gras, Giovanni
dc.date.accessioned2025-10-22T10:58:31Z
dc.date.issued2023-12
dc.identifier.issn1872-7638ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5603
dc.description.abstractThis research focuses on Metal Material Extrusion (MMEX) using BASF Ultrafuse® Stainless Steel 316L filament, aiming to model the influence of infill parameters to optimize material usage without compromising final reliability and safety. Experimental variations in air gap, layer height, and sample orientation are analyzed for their effects on dimensional shrinkage, morphology, microstructure, and mechanical performance. The study proposes a reliable non-linear negative exponential model for data analysis, and characterization techniques such as X-ray diffraction, microscopy, and standardized mechanical testing are conducted. Results reveal a substantial influence of raster spacing, with sparse configurations demonstrating slightly reduced linear shrinkage and non-uniform pore distribution. Tensile and flexural tests highlight distinct behaviors in solid and sparse configurations, emphasizing the latter’s potential for offering advantages such as reduced weight and cost savings, and setting sparse samples as a viable alternative for designs with extensive bed-parallel surfaces. The findings contribute to the development of novel design-for-manufacturing strategies for functional, structural elements using MMEX and offer insights for optimizing the fabrication process by understanding the role of raster deposition.ca
dc.format.extentp.14ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofTheoretical and Applied Fracture Mechanics 2023, 128ca
dc.rights© L'autor/aca
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherAdditive manufacturingca
dc.subject.other3D printingca
dc.subject.other3D printing parametersca
dc.subject.otherAnisotropyca
dc.subject.otherFracture mechanicsca
dc.subject.otherEngineered materialsca
dc.subject.otherFabricació additivaca
dc.subject.otherImpressió 3Dca
dc.subject.otherAnisotropiaca
dc.subject.otherMecànica de fracturaca
dc.titleTailored mechanical performance of fused filament fabricated 316L steel components through printing parameter optimizationca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/embargoedAccess
dc.date.embargoEnd2025-11-30T01:00:00Z
dc.embargo.terms24 mesosca
dc.subject.udc539ca
dc.subject.udc621ca
dc.identifier.doihttps://doi.org/10.1016/j.tafmec.2023.104141ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/MCI/PN I+D/PID2021-123876OB-I00ca
dc.description.versioninfo:eu-repo/semantics/acceptedVersionca


Ficheros en el ítem

Este documento contiene ficheros embargados hasta el dia 30-11-2025

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir