Microstructure and mechanical properties of TiN/CrN multilayer coatings deposited in an industrial-scale HiPIMS system
Ver/Abrir
Este documento contiene ficheros embargados hasta el dia 01-11-2027
Autor/a
Otros/as autores/as
Fecha de publicación
2025-11-01ISSN
1879-3347
Resumen
TiN/CrN multilayer coatings of varying bilayer period (Ʌ) were deposited in an industrial-scale deposition plant by means of reactive high power impulse magnetron sputtering. By alternately sputtering titanium and chromium targets in a nitrogen-containing atmosphere, coatings with a Ʌ between 7 and 460 nm were obtained. The influence of Ʌ was investigated in regard of chemical composition, microstructure, and mechanical properties of the coatings. All coatings appear to be smooth and compact based on scanning electron microscope observations. X-ray diffraction showed separate crystalline phases of TiN and CrN for the samples with higher Ʌ. However, for the smallest periods (Ʌ7 and Ʌ15), the position of the peaks corresponding to the TiN and CrN phases overlap, which is consistent with the coherent growth of these phases and/or the formation of a ternary TiCrN crystalline phase. Additionally, the presence of satellite peaks points to a superlattice structure comprising TiN and CrN sublayers. High resolution transmission electron microscopy analysis on the superlattice samples evidenced an epitaxial growth across the superlattice interfaces for these coatings. An average compressive stress value of 2.2 GPa was measured, falling between those of TiN and CrN single-layer coatings. The sample exhibiting the highest hardness (H) and Young's modulus (E) values, reaching 31.9 GPa and 394 GPa, respectively, corresponded to Ʌ15. Nevertheless, while the Ʌ7 sample slightly reduced the H and E values (27.7 and 335 GPa respectively), it achieved maximum H/E and H3/E2 ratios, which are of particular interest to enhance wear resistance and prevent cracking failure. In summary, this work highlights the potential of depositing nanostructured multilayer coating with engineered interfaces and periodicities, providing exceptional mechanical and tribological properties, using a HiPIMS industrial deposition system.
Tipo de documento
Artículo
Versión del documento
Versión aceptada
Lengua
Inglés
Materias (CDU)
620 - Ensayo de materiales. Materiales comerciales. Economía de la energía
66 - Ingeniería, tecnología e industria química. Metalurgia
Palabras clave
Páginas
p.21
Publicado por
Elsevier
Publicado en
Surface and Coatings Technology 2025, 515
Número del acuerdo de la subvención
info: eu-repo/grantAgreement/SUR del DEC i FSE/FI/2019FI_B01190
info: eu-repo/grantAgreement/SUR del DEC i FSE/FI/2020FI_B1_00114
info: eu-repo/grantAgreement/SUR del DEC i FSE/FI/2021FI_B2_00167
info:eu-repo/grantAgreement/URL i SUR del DEC/Projectes recerca PDI/2021-URL-Proj-019
info:eu-repo/grantAgreement/URL i SUR del DEC/Projectes recerca PDI/2020-URL-Proj-020
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/