Mostrar el registro sencillo del ítem

dc.contributorUniversitat Ramon Llull. La Salle
dc.contributorUniversitat de Barcelona
dc.contributorFIDMAG, Sisters Hospitallers Research Foundation
dc.contributorCIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III)
dc.contributorHospital de Sant Pau i la Santa Creu
dc.contributor.authorHeredia Lidón, Álvaro
dc.contributor.authorEcheverry Quiceno, Luis Miguel
dc.contributor.authorGonzález Alzate, Alejandro
dc.contributor.authorHostalet, Noemí
dc.contributor.authorPomarol-Clotet, Edith
dc.contributor.authorFortea, Juan
dc.contributor.authorFatjó-Vilas, Mar
dc.contributor.authorMartínez-Abadías, Neus
dc.contributor.authorSevillano, Xavier
dc.date.accessioned2025-09-09T14:16:22Z
dc.date.available2025-09-09T14:16:22Z
dc.date.created2025-01-31
dc.date.issued2025-08-01
dc.identifier.issn0169-2607ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5489
dc.description.abstractBackground and Objectives: Facial dysmorphologies have emerged as potential critical indicators in the diagnosis and prognosis of genetic, psychotic, and rare disorders. While some conditions present with severe dysmorphologies, others exhibit subtler traits that may not be perceivable to the human eye, requiring the use of precise quantitative tools for accurate identification. Manual annotation remains time-consuming and prone to inter- and intra-observer variability. Existing tools provide partial solutions, but no end-to-end automated pipeline integrates the full process of 3D facial biomarker extraction from magnetic resonance imaging. Methods and Results: We introduce BioFace3D, an open-source pipeline designed to automate the discovery of potential 3D facial biomarkers from magnetic resonance imaging. BioFace3D consists of three automated modules: (i) 3D facial model extraction from magnetic resonance images, (ii) deep learning-based registration of homologous anatomical landmarks, and (iii) computation of geometric morphometric biomarkers from landmark coordinates. Conclusions: The evaluation of BioFace3D is performed both at a global level and within each individual module, through a series of exhaustive experiments using proprietary and public datasets, demonstrating the robustness and reliability of the results obtained by the tool. Source code, along with trained models, can be found at https://bitbucket.org/cv_her_lasalleca
dc.format.extent14 p.ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofComputer Methods and Programs in Biomedicine Volume 271, November 2025, 109010ca
dc.rights© L'autor/aca
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.other3D Facial reconstructionca
dc.subject.otherMRIca
dc.subject.otherFacial biomarkersca
dc.subject.other3d landmarkingca
dc.subject.otherGeometric morphometricsca
dc.subject.otherSoftwareca
dc.titleBioFace3D: An end-to-end open-source software for automated extraction of potential 3D facial biomarkers from MRIscansca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc004ca
dc.subject.udc61ca
dc.subject.udc62ca
dc.identifier.doihttps://doi.org/10.1016/j.cmpb.2025.109010ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir