Mostra el registre parcial de l'element

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorDuran-Mota, Jose Antonio
dc.contributor.authorMoon, Harrison
dc.contributor.authorArtigues Cladera, Margalida
dc.contributor.authorBorrós, Salvador
dc.contributor.authorOliva-Jorge, Nuria
dc.date.accessioned2025-09-05T08:36:11Z
dc.date.available2025-09-05T08:36:11Z
dc.date.issued2025-11-01
dc.identifier.issn1879-1344ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5475
dc.description.abstractChondroitin sulfate (CS) shows great promise for hydrogels and scaffolds in tissue engineering due to its biocompatibility and compressive strength. However, its chemical structure limits its use, necessitating modifications like oxidation to render CS with aldehyde groups (oxCS) and enabling hydrogel formation via Schiff base chemistry with amines. While an alkaline pH is essential for this crosslinking, high alkalinity affects the stability of oxCS. Despite extensive studies on CS, the extent of this in oxCS has not been thoroughly explored. This study examines oxCS degradation under alkaline conditions using spectrometric and spectroscopic techniques, suggesting possible pathways associated with decreased aldehyde functionality and reduced potential for Schiff base formation. At pH 10, aldehyde groups diminish by 50 % within 2 h, accompanied by enhanced chain scission compared to CS. These findings are applied as proof of concept in the development of two hydrogel families using 8-arm PEG-amines with varying pKa values, demonstrating the critical impact on oxCS stability and affecting the hydrogels' mechanical properties and performance. All in all, the present work provides essential insights into the design of glycosaminoglycan-based hydrogels and scaffolds. These findings advance the development of tailored biomaterials for tissue engineering, addressing the challenges posed by oxCS's stability under alkaline conditions.ca
dc.format.extentp.14ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofCarbohydrate Polymers 2025, 367ca
dc.rights© L'autor/aca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherChondroitin sulfateca
dc.subject.otherOxidized chondroitin sulfateca
dc.subject.otherHydrogel crosslinkingca
dc.subject.otherSchiff Base chemistryca
dc.subject.otherAlkaline degradationca
dc.subject.otherGlycosaminoglycan modificationsca
dc.subject.otherTissue engineering scaffoldsca
dc.subject.otherSulfat de condroïtinaca
dc.subject.otherBase de Schiffca
dc.subject.otherMetalls alcalinoterrisca
dc.subject.otherEnginyeria de teixitsca
dc.titleInsights into the alkaline degradation of oxidized chondroitin sulfate: Implications in Schiff base formation for hydrogel fabricationca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc54ca
dc.subject.udc577ca
dc.identifier.doihttps://doi.org/10.1016/j.carbpol.2025.124016ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/SUR del DEC/FI/2024 FI-1 00488ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/La Caixa/Junior Leaders/11920009ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/EPSRC/New Investigator Award/EP/W021234ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix