Mostrar el registro sencillo del ítem

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorGarcia de la Torre, Hector
dc.contributor.authorGomez-Gras, Giovanni
dc.contributor.authorPérez, Marco A.
dc.date.accessioned2025-07-14T16:39:26Z
dc.date.available2025-07-14T16:39:26Z
dc.date.issued2025-06-27
dc.identifier.issn1758-7670ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5428
dc.description.abstractPurpose: This study aims to optimize Metal Additive Manufacturing (MAM) via Material Extrusion (MEX) using desktop equipment to produce high-performance 17-4 PH stainless steel parts. This research seeks to address the underexplored extrusion process parameters that hinder optimization in this field, contributing to a deeper understanding of the MAM via the MEX process and its implications for other materials./ Design/methodology/approach: This study uses a quantitative approach using robust statistical methods, including Taguchi and Response Surface Methodology designs. Data was collected through a systematic investigation of the effects of process parameters on the physical and mechanical properties of the produced parts. Taguchi’s design was used to determine parameter significance, whereas a Doehlert design was used to optimize responses, focusing on layer adhesion and porosity reduction./ Findings: The results reveal that the optimized extrusion process parameters significantly improved the tensile modulus (198.2±11.9 GPa), tensile strength (977.2±31.8 MPa) and Vickers hardness (287±7 HV100). These findings confirm the efficacy of the methodology, demonstrating that superior mechanical properties can be achieved using desktop equipment. Comparative analysis with professional-grade equipment supports the feasibility of producing cost-effective, high-performance metal parts./ Originality/value: This research offers a novel approach to optimizing MAM via MEX, particularly for stainless steel alloys. The findings contribute valuable insights that extend the current understanding of MEX processes, highlighting the potential for this approach to advance MAM capabilities for industrial applications. This study also identifies areas for future research and potential practical applications, contributing to the broader field of MAM.ca
dc.format.extentp.34ca
dc.language.isoengca
dc.publisherEmeraldca
dc.relation.ispartofRapid Prototyping Journal 2025, 31 (7), 1362-1382ca
dc.rights© L'autor/aca
dc.rightsAttribution-NonCommercial 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.otherMaterial extrusion additive manufacturingca
dc.subject.other17-4 PH stainless steelca
dc.subject.otherProcess parametersca
dc.subject.otherMultivariable optimizationca
dc.subject.otherMechanical propertiesca
dc.subject.otherFabricació additivaca
dc.subject.otherAcer inoxidableca
dc.subject.otherPropietats mecàniquesca
dc.titleAchieving 17-4 PH parts with comparable performance to high-investment technologies through a multivariable Doehlert design optimization and material extrusionca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc621ca
dc.identifier.doihttps://doi.org/10.1108/RPJ-09-2024-0389ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/MCI/PN I+D/PID2021-123876OB-I00ca
dc.description.versioninfo:eu-repo/semantics/acceptedVersionca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir