Show simple item record

dc.contributorUniversitat Ramon Llull. La Salle
dc.contributor.authorzahia, sofia
dc.contributor.authorGarcia-Zapirain, Begonya
dc.contributor.authorSevillano, Xavier
dc.contributor.authorGonzález, Alejandro
dc.contributor.authorKim, Paul J.
dc.contributor.authorElmaghraby, Adel
dc.date.accessioned2025-07-10T10:34:50Z
dc.date.available2025-07-10T10:34:50Z
dc.date.issued2020-01
dc.identifier.issn1873-2860ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5399
dc.description.abstractPressure injuries represent a tremendous healthcare challenge in many nations. Elderly and disabled people are the most affected by this fast growing disease. Hence, an accurate diagnosis of pressure injuries is paramount for efficient treatment. The characteristics of these wounds are crucial indicators for the progress of the healing. While invasive methods to retrieve information are not only painful to the patients but may also increase the risk of infections, non-invasive techniques by means of imaging systems provide a better monitoring of the wound healing processes without causing any harm to the patients. These systems should include an accurate segmentation of the wound, the classification of its tissue types, the metrics including the diameter, area and volume, as well as the healing evaluation. Therefore, the aim of this survey is to provide the reader with an overview of imaging techniques for the analysis and monitoring of pressure injuries as an aid to their diagnosis, and proof of the efficiency of Deep Learning to overcome this problem and even outperform the previous methods. In this paper, 114 out of 199 papers retrieved from 8 databases have been analyzed, including also contributions on chronic wounds and skin lesions.ca
dc.format.extent40 p.ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofArtificial Intelligence in Medicine, vol. 102, gener 2020ca
dc.rights© 2019 Elsevier. Tots els drets reservatsca
dc.subject.otherPressure injuryca
dc.subject.otherWound image analysisca
dc.subject.otherMachine learning algorithmsca
dc.subject.otherDeep learningca
dc.subject.otherLesió per pressióca
dc.subject.otherAnàlisi d'imatges de feridesca
dc.subject.otherAlgoritmes d'aprenentatge automàticca
dc.subject.otherAprenentatge profundca
dc.titlePressure injury image analysis with machine learning techniques: A systematic review on previous and possible future methodsca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc004ca
dc.subject.udc61ca
dc.subject.udc62ca
dc.identifier.doihttps://doi.org/10.1016/j.artmed.2019.101742ca
dc.description.versioninfo:eu-repo/semantics/acceptedVersionca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint