Mostra el registre parcial de l'element

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorParedes-Miguel, Jose R.
dc.contributor.authorCano-Lara, Miroslava
dc.contributor.authorGarcia Granada, Andres Amador
dc.contributor.authorEspinal, Andres
dc.contributor.authorVillaseñor-Aguilar, Marcos-Jesús
dc.contributor.authorMartínez-Jiménez, Leonardo
dc.contributor.authorRostro Gonzalez, Horacio
dc.date.accessioned2025-07-09T16:31:01Z
dc.date.available2025-07-09T16:31:01Z
dc.date.issued2025-06
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5389
dc.description.abstractUltrafast pulsed laser technology presents unique challenges and opportunities in material processing and characterization for precision photonics. Herein, an experiment is conducted involving the use of an ultrafast pulsed laser to irradiate a molybdenum film, inducing oxide formation. A total of 54 experiments are performed, varying the laser irradiation time and per-pulse laser fluence, resulting in a database with diverse oxide formations on the material. This dataset is further expanded numerically through interpolation to 187 samples. Subsequently, eight different deep neural network models, each with varying hidden layers and numbers of neurons, are employed to characterize the laser behavior with different parameters. These models are then validated numerically using three different learning rates, and the results are statistically evaluated using three metrics: mean squared error, mean absolute error, and R2 score.ca
dc.format.extentp.13ca
dc.language.isoengca
dc.publisherWileyca
dc.relation.ispartofAdvanced Photonics Research 2025, 6 (6)ca
dc.rights© L'autor/aca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherDeep neural networksca
dc.subject.otherMaterial characterizationca
dc.subject.otherMolybdenum thin filmsca
dc.subject.otherOxide formationca
dc.subject.otherUltrafast pulsed lasersca
dc.subject.otherMolibdèca
dc.subject.otherLàsers d'impulsos ultracurtsca
dc.subject.otherÒxidsca
dc.titleExploring the Role of Artificial Intelligence in Precision Photonics: A Case Study on Deep Neural Network-Based fs Laser Pulsed Parameter Estimation for MoOx Formationca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc621ca
dc.identifier.doihttps://doi.org/10.1002/adpr.202400113ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix