Show simple item record

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorMacia, Nicolas
dc.contributor.authorBresolí-Obach, Roger
dc.contributor.authorNonell, Santi
dc.contributor.authorHeyne, Belinda
dc.date.accessioned2025-06-17T11:09:24Z
dc.date.available2025-06-17T11:09:24Z
dc.date.issued2018-01-09
dc.identifier.issn1520-5126ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5319
dc.description.abstractPlasmonic nanoparticles can strongly interact with adjacent photosensitizer molecules, resulting in a significant alteration of their singlet oxygen (1O2) production. In this work, we report the next generation of metal-enhanced 1O2 nanoplatforms exploiting the lightning rod effect, or plasmon hot spots, in anisotropic (nonspherical) metal nanoparticles. We describe the synthesis of Rose Bengal-decorated silica-coated silver nanocubes (Ag@SiO2-RB NCs) with silica shell thicknesses ranging from 5 to 50 nm based on an optimized protocol yielding highly homogeneous Ag NCs. Steady-state and time-resolved 1O2 measurements demonstrate not only the silica shell thickness dependence on the metal-enhanced 1O2 production phenomenon but also the superiority of this next generation of nanoplatforms. A maximum enhancement of 1O2 of approximately 12-fold is observed with a 10 nm silica shell, which is among the largest 1O2 production metal enhancement factors ever reported for a colloidal suspension of nanoparticles. Finally, the Ag@SiO2-RB NCs were benchmarked against the Ag@SiO2-RB nanospheres previously reported by our group, and the superior 1O2 production of Ag@SiO2-RB NCs resulted in improved antimicrobial activities in photodynamic inactivation experiments using both Gram-positive and -negative bacteria model strains.ca
dc.format.extentp.11ca
dc.language.isoengca
dc.publisherAmerican Chemical Societyca
dc.relation.ispartofJournal of the American Chemical Society 2019, 141 (1), 684–692ca
dc.rights© American Chemical Societyca
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherBacteriaca
dc.subject.otherMetalsca
dc.subject.otherNanoparticlesca
dc.subject.otherPhotosensitizationca
dc.subject.otherSilicaca
dc.subject.otherBacterisca
dc.subject.otherMetallsca
dc.subject.otherNanopartículesca
dc.subject.otherFotosensibilització (Biologia)ca
dc.subject.otherSíliceca
dc.titleHybrid Silver Nanocubes for Improved Plasmon-Enhanced Singlet Oxygen Production and Inactivation of Bacteriaca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.terms12 mesosca
dc.subject.udc539ca
dc.subject.udc54ca
dc.identifier.doihttps://doi.org/10.1021/jacs.8b12206ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO/PN I+D/CTQ2016-78454-C2-1-Rca
dc.description.versioninfo:eu-repo/semantics/acceptedVersionca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

© American Chemical Society
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint