Mostrar el registro sencillo del ítem

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorAlvarez Canchila, Oscar Ivan
dc.contributor.authorEspinal, Andres
dc.contributor.authorSotelo, Marco
dc.contributor.authorSoria Alcaraz, Jorge Alberto
dc.contributor.authorRostro Gonzalez, Horacio
dc.date.accessioned2025-06-06T07:44:29Z
dc.date.available2025-06-06T07:44:29Z
dc.date.issued2024-12-02
dc.identifier.issn2169-3536ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5293
dc.description.abstractThe Liquid State Machine (LSM) framework addresses supervised learning tasks involving spatio-temporal data streams. It relies on a randomly created, untrained Spiking Recurrent Neural Network (SRNN), called the “liquid,” to map inputs into task-independent representations. A simple readout layer then uses these representations to solve specific tasks. LSM’s computational power arises from two properties: the Separation Property (related to the liquid) and the Approximation Property (related to the readout). This research aims to enhance the liquid’s separation property to improve classification performance and enable multitask learning through swarm intelligence. The study develops a two-phase approach: first, using Particle Swarm Optimization (PSO) to optimize the liquid for distinguishing data streams of different classes in single tasks; and second, extending this optimization to multitask learning with Original Multi-Objective PSO (OMOPSO). Results from experiments on four artificial problems (one of frequency recognition and three of pattern recognition) demonstrate that optimized liquids improve separability and maintain regularized firing behaviors, even with a simple softmax readout layer. On average, the experiments show that our approach outperforms baseline methods across all four artificial datasets when using PSO and achieves superior results on three pattern recognition datasets when employing OMOPSO.ca
dc.format.extent16 p.ca
dc.language.isoengca
dc.publisherInstitute of Electrical and Electronics Engineersca
dc.relation.ispartofIEEE Access. 2024;12:182856-182871ca
dc.rights© L'autor/aca
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherLiquidsca
dc.subject.otherOptimizationca
dc.subject.otherReservoirsca
dc.subject.otherParticle swarm optimizationca
dc.subject.otherVectorsca
dc.subject.otherNeuronsca
dc.subject.otherTrainingca
dc.subject.otherStreamsca
dc.subject.otherSpatiotemporal phenomenaca
dc.subject.otherParticle measurementsca
dc.subject.otherLiquid state machineca
dc.subject.othermultitask learningca
dc.subject.otherparticle swarm optimizationca
dc.subject.otherreservoir computingca
dc.subject.otherspiking neural networksca
dc.titleEnhancing Liquid State Machine Classification Through Reservoir Separability Optimization Using Swarm Intelligence and Multitask Learningca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.identifier.doihttps://doi.org.10.1109/ACCESS.2024.3510459ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir