The first look: a biometric analysis of emotion recognition using key facial features
Author
Other authors
Publication date
2025ISSN
2624-9898
Abstract
Introduction: Facial expressions play a crucial role in human emotion recognition and social interaction. Prior research has highlighted the significance of the eyes and mouth in identifying emotions; however, limited studies have validated these claims using robust biometric evidence. This study investigates the prioritization of facial features during emotion recognition and introduces an optimized approach to landmark-based analysis, enhancing efficiency without compromising accuracy.
Methods: A total of 30 participants were recruited to evaluate images depicting six emotions: anger, disgust, fear, neutrality, sadness, and happiness. Eye-tracking technology was utilized to record gaze patterns, identifying the specific facial regions participants focused on during emotion recognition. The collected data informed the development of a streamlined facial landmark model, reducing the complexity of traditional approaches while preserving essential information.
Results: The findings confirmed a consistent prioritization of the eyes and mouth, with minimal attention allocated to other facial areas. Leveraging these insights, we designed a reduced landmark model that minimizes the conventional 68-point structure to just 24 critical points, maintaining recognition accuracy while significantly improving processing speed.
Discussion: The proposed model was evaluated using multiple classifiers, including Multi-Layer Perceptron (MLP), Random Decision Forest (RDF), and Support Vector Machine (SVM), demonstrating its robustness across various machine learning approaches. The optimized landmark selection reduces computational costs and enhances real-time emotion recognition applications. These results suggest that focusing on key facial features can improve the efficiency of biometric-based emotion recognition systems without sacrificing accuracy.
Document Type
Article
Document version
Published version
Language
English
Subject (CDU)
004 - Computer science and technology. Computing. Data processing
159.9 - Psychology
Keywords
Pages
p.16
Publisher
Frontiers Media
Is part of
Frontiers in Computer Science 2025, 7
This item appears in the following Collection(s)
Rights
© L'autor/a
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/