Show simple item record

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorRand, David
dc.contributor.authorSáez, Meritxell
dc.date.accessioned2025-03-31T12:36:02Z
dc.date.available2025-03-31T12:36:02Z
dc.date.issued2025-03-14
dc.identifier.issn1361-6544ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5202
dc.description.abstractWe consider generic families Xθ of smooth dynamical systems depending on parameters θ ∈ P where P is a 2-dimensional simply connected domain and assume that each Xθ only has a finite number of restpoints and periodic orbits. We prove that if over the boundary of P there is a S or Z shaped bifurcation graph containing two opposing fold bifurcation points while over the rest of the boundary there are no other bifurcation points, then, if there is no fold-Hopf bifurcation in P, there is a set of bifurcation curves in P that contain an odd number of cusps. In particular, there is at least one codimension 2 bifurcation point in the interior of P.ca
dc.format.extentp.14ca
dc.language.isoengca
dc.publisherIOP Publishing i London Mathematical Societyca
dc.relation.ispartofNonlinearity 2025, 38ca
dc.rights© L'autor/aca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherDynamical systemsca
dc.subject.otherBifurcationsca
dc.subject.otherCatastrophesca
dc.subject.otherCusp bifurcationca
dc.subject.otherBogdanov-Takens bifurcationca
dc.subject.otherDinàmicaca
dc.subject.otherBifurcació, Teoria de laca
dc.subject.otherCatàstrofes (Matemàtica)ca
dc.titleBistable boundary conditions implying codimension 2 bifurcationsca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc51ca
dc.identifier.doihttps://doi.org/10.1088/1361-6544/adb5e9ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

© L'autor/a
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint