Show simple item record

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorVega, Aitor
dc.contributor.authorPlanas, Antoni (Planas Sauter)
dc.contributor.authorBiarnés Fontal, Xevi
dc.date.accessioned2025-03-20T10:54:08Z
dc.date.available2025-03-20T10:54:08Z
dc.date.issued2025-02-01
dc.identifier.issn1422-0067ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/5168
dc.description.abstractThe growing demand for efficient, selective, and stable enzymes has fueled advancements in computational enzyme engineering, a field that complements experimental methods to accelerate enzyme discovery. With a plethora of software and tools available, researchers from different disciplines often face challenges in selecting the most suitable method that meets their requirements and available starting data. This review categorizes the computational tools available for enzyme engineering based on their capacity to enhance the following specific biocatalytic properties of biotechnological interest: (i) protein–ligand affinity/selectivity, (ii) catalytic efficiency, (iii) thermostability, and (iv) solubility for recombinant enzyme production. By aligning tools with their respective scoring functions, we aim to guide researchers, particularly those new to computational methods, in selecting the appropriate software for the design of protein engineering campaigns. De novo enzyme design, involving the creation of novel proteins, is beyond this review’s scope. Instead, we focus on practical strategies for fine-tuning enzymatic performance within an established reference framework of natural proteins.ca
dc.format.extentp.36ca
dc.language.isoengca
dc.relation.ispartofInternational Journal of Molecular Sciences 2025, 26(3), 980ca
dc.rights© L'autor/aca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherComputational protein engineeringca
dc.subject.otherEnzyme designca
dc.subject.otherComputational predictionca
dc.subject.otherMolecular recognitionca
dc.subject.otherBinding affinityca
dc.subject.otherCatalytic efficiencyca
dc.subject.otherProtein stabilityca
dc.subject.otherProtein solubilityca
dc.subject.otherMolecular modelingca
dc.subject.otherBiologia computacionalca
dc.subject.otherEnzimsca
dc.subject.otherReconeixement molecularca
dc.subject.otherCatalitzadorsca
dc.subject.otherProteïnesca
dc.subject.otherSimulació molecularca
dc.titleA practical guide to computational tools for engineering biocatalytic propertiesca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc577ca
dc.identifier.doihttps://doi.org/10.3390/ijms26030980ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN/PN I+D/PID2019-104350RB-I00ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN/PN I+D/PID2022-138252OB-I00ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

© L'autor/a
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint