dc.contributor | Universitat Ramon Llull. IQS | |
dc.contributor.author | Palau Gauthier, Marta | |
dc.contributor.author | Muñoz, Estela | |
dc.contributor.author | Freixanet Gusta, Muriel | |
dc.contributor.author | Larrosa, María Nieves | |
dc.contributor.author | Gomis, Xavier | |
dc.contributor.author | Gilabert, Joan | |
dc.contributor.author | Almirante, Benito | |
dc.contributor.author | Puntes, Victor | |
dc.contributor.author | Texidó, Robert | |
dc.contributor.author | Gavaldà, Joan | |
dc.date.accessioned | 2024-12-20T08:46:08Z | |
dc.date.available | 2024-12-20T08:46:08Z | |
dc.date.issued | 2023-06 | |
dc.identifier.issn | 2165-0497 | ca |
dc.identifier.uri | http://hdl.handle.net/20.500.14342/4664 | |
dc.description.abstract | In view of the current increase and spread of antimicrobial resistance (AMR), there is an urgent need to find new strategies to combat it. This study had two aims. First, we synthesized highly monodispersed silver nanoparticles (AgNPs) of approximately 17 nm, and we functionalized them with mercaptopoly(ethylene glycol) carboxylic acid (mPEG-COOH) and amikacin (AK). Second, we evaluated the antibacterial activity of this treatment (AgNPs_mPEG_AK) alone and in combination with hyperthermia against planktonic and biofilm-growing strains. AgNPs, AgNPs_mPEG, and AgNPs_mPEG_AK were characterized using a suite of spectroscopy and microscopy methods. Susceptibility to these treatments and AK was determined after 24 h and over time against 12 clinical multidrug-resistant (MDR)/extensively drug-resistant (XDR) isolates of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The efficacy of the treatments alone and in combination with hyperthermia (1, 2, and 3 pulses at 41°C to 42°C for 15 min) was tested against the same planktonic strains using quantitative culture and against one P. aeruginosa strain growing on silicone disks using confocal laser scanning microscopy. The susceptibility studies showed that AgNPs_mPEG_AK was 10-fold more effective than AK alone, and bactericidal efficacy after 4, 8, 24, or 48 h was observed against 100% of the tested strains. The combination of AgNPs_mPEG_AK and hyperthermia eradicated 75% of the planktonic strains and exhibited significant reductions in biofilm formation by P. aeruginosa in comparison with the other treatments tested, except for AgNPs_mPEG_AK without hyperthermia. In conclusion, the combination of AgNPs_mPEG_AK and hyperthermia may be a promising therapy against MDR/XDR and biofilm-producing strains. | ca |
dc.format.extent | p.16 | ca |
dc.language.iso | eng | ca |
dc.publisher | American Society for Microbiology | ca |
dc.relation.ispartof | Microbiology Spectrum 2023, 11 (3) | ca |
dc.rights | © L'autor/a | ca |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.other | Antibacterial activity | ca |
dc.subject.other | MDR/XDR | ca |
dc.subject.other | Amikacin | ca |
dc.subject.other | Biofilms | ca |
dc.subject.other | Hyperthermia | ca |
dc.subject.other | Silver nanoparticles | ca |
dc.subject.other | Antibiòtics | ca |
dc.subject.other | Resistència als medicaments | ca |
dc.title | In Vitro Antibacterial Activity of Silver Nanoparticles Conjugated with Amikacin and Combined with Hyperthermia against Drug-Resistant and Biofilm-Producing Strains | ca |
dc.type | info:eu-repo/semantics/article | ca |
dc.rights.accessLevel | info:eu-repo/semantics/openAccess | |
dc.embargo.terms | cap | ca |
dc.subject.udc | 577 | ca |
dc.subject.udc | 615 | ca |
dc.identifier.doi | https://doi.org/10.1128/spectrum.00280-23 | ca |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO/ISCIII/FIS 01162 | ca |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundació la Marató de TV3/472/U/2018 | ca |
dc.description.version | info:eu-repo/semantics/publishedVersion | ca |