Show simple item record

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorCañas Gutiérrez, Ana
dc.contributor.authorToro, Lenka
dc.contributor.authorFornaguera Puigvert, Cristina
dc.contributor.authorBorrós i Gómez, Salvador
dc.contributor.authorOsorio, Marlon
dc.contributor.authorCastro Herazo, Cristina
dc.contributor.authorArboleda Toro, David
dc.date.accessioned2024-12-20T08:44:34Z
dc.date.available2024-12-20T08:44:34Z
dc.date.issued2023-05
dc.identifier.issn2073-4360ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/4660
dc.description.abstractBacterial nanocellulose (BNC) has a negative surface charge in physiological environments, which allows the adsorption of calcium ions to initiate the nucleation of different calcium phosphate phases. The aim of this study was to investigate different methods of mineralization in three-dimensional microporous bacterial nanocellulose with the intention of mimicking the composition, structure, and biomechanical properties of natural bone. To generate the 3D microporous biomaterial, porogen particles were incorporated during BNC fermentation with the Komagataeibacter medellinensis strain. Calcium phosphates (CPs) were deposited onto the BNC scaffolds in five immersion cycles, alternating between calcium and phosphate salts in their insoluble forms. Scanning electron microscopy (SEM) showed that the scaffolds had different pore sizes (between 70 and 350 µm), and their porous interconnectivity was affected by the biomineralization method and time. The crystals on the BNC surface were shown to be rod-shaped, with a calcium phosphate ratio similar to that of immature bone, increasing from 1.13 to 1.6 with increasing cycle numbers. These crystals also increased in size with an increasing number of cycles, going from 25.12 to 35.9 nm. The main mineral phase observed with X-ray diffraction was octacalcium dihydrogen hexakis phosphate (V) pentahydrate (OCP). In vitro studies showed good cellular adhesion and high cell viability (up to 95%) with all the scaffolds. The osteogenic differentiation of human bone marrow mesenchymal stem cells on the scaffolds was evaluated using bone expression markers, including alkaline phosphatase, osteocalcin, and osteopontin. In conclusion, it is possible to prepare 3D BNC scaffolds with controlled microporosity that allow osteoblast adhesion, proliferation, and differentiation.ca
dc.format.extentp.18ca
dc.language.isoengca
dc.publisherMDPIca
dc.relation.ispartofPolymers 2023, 15(9), 2012ca
dc.rights© L'autor/aca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherNanocompositesca
dc.subject.otherBacterial nanocelluloseca
dc.subject.otherMicroporosityca
dc.subject.otherBiomineralization and bone regenerationca
dc.subject.otherNanocompòsits (Materials)ca
dc.subject.otherCel·lulosaca
dc.subject.otherBiomineralitzacióca
dc.subject.otherOssos--Regeneracióca
dc.titleBiomineralization in Three-Dimensional Scaffolds Based on Bacterial Nanocellulose for Bone Tissue Engineering: Feature Characterization and Stem Cell Differentiationca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc615ca
dc.subject.udc620ca
dc.identifier.doihttps://doi.org/10.3390/polym15092012ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

© L'autor/a
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint