Machine learning uncovers analytical kinetic models of bioprocesses
Altres autors/es
Data de publicació
2024-08-30ISSN
1873-4405
Resum
Identifying suitable kinetic models for bioprocesses is a complex task, particularly when interpretable models are sought. Classical machine learning algorithms are gaining wide interest to simulate complex bioprocesses that are hard to describe via first principles. However, they often rely on a priori assumptions of the model structure and lead to mathematical expressions that are hard to interpret. In this work, we apply an alternative approach based on symbolic regression to identify bioprocess models without assuming a pre-defined model structure. We obtain algebraic expressions for the kinetic rates from data consisting of concentration profiles. The model training was performed following a two-step approach that allows avoiding the iterative integration of differential equations for the parameter estimation step. The proposed procedure was found from numerical examples to slightly outperform neural network benchmarks. Moreover, the obtained algebraic expressions for the rate equations facilitate the model interpretation and enable the direct application of optimization algorithms.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Matèries (CDU)
5 - Ciències pures i naturals
Paraules clau
Bioprocess
Symbolic regression
Optimization
Pàgines
13 p.
Publicat per
Elsevier
Publicat a
Chemical Engineering Science. 2024;300:120606
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/