Show simple item record

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorLafaye, Céline
dc.contributor.authorAumonier, Sylvain
dc.contributor.authorTorra, Joaquim
dc.contributor.authorSignor, Luca
dc.contributor.authorvon Stetten, David
dc.contributor.authorNoirclerc Savoye, Marjolaine
dc.contributor.authorShu, Xiaokun
dc.contributor.authorRuiz González, Rubén
dc.contributor.authorGotthard, Guillaume
dc.contributor.authorRoyant, Antoine
dc.contributor.authorNonell, Santi
dc.date.accessioned2024-11-01T14:40:42Z
dc.date.available2024-11-01T14:40:42Z
dc.date.issued2022
dc.identifier.issn1474-9092ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/4503
dc.description.abstractminiSOG, developed as the first fully genetically encoded singlet oxygen photosensitiser, has found various applications in cell imaging and functional studies. Yet, miniSOG has suboptimal properties, including a low yield of singlet oxygen generation, which can nevertheless be improved tenfold upon blue light irradiation. In a previous study, we showed that this improvement was due to the photolysis of the miniSOG chromophore, flavin mononucleotide (FMN), into lumichrome, with concomitant removal of the phosphoribityl tail, thereby improving oxygen access to the alloxazine ring. We thus reasoned that a chromophore with a shorter tail would readily improve the photosensitizing properties of miniSOG. In this work, we show that the replacement of FMN by riboflavin (RF), which lacks the bulky phosphate group, significantly improves the singlet oxygen quantum yield (ΦΔ). We then proceeded to mutagenize the residues stabilizing the phosphate group of FMN to alter the chromophore specificity. We identified miniSOG-R57Q as a flavoprotein that selectively binds RF in cellulo, with a modestly improved ΦΔ. Our results show that it is possible to modify the flavin specificity of a given flavoprotein, thus providing a new option to tune its photophysical properties, including those leading to photosensitization. We also determined the structure of miniSOG-Q103L, a mutant with a much increased ΦΔ, which allowed us to postulate the existence of another access channel to FMN for molecular oxygen.ca
dc.format.extentp.11ca
dc.language.isoengca
dc.publisherSpringerca
dc.relation.ispartofPhotochemical & Photobiological Sciences 2022, 21, 1545–1555ca
dc.rights© L'autor/aca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherminiSOGca
dc.subject.otherPhotosensitization, Biologicalca
dc.subject.otherSinglet oxygenca
dc.subject.otherFotosensibilització (Biologia)ca
dc.subject.otherProteïnesca
dc.titleRiboflavin-binding proteins for singlet oxygen productionca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc577ca
dc.identifier.doihttps://doi.org/10.1007/s43630-021-00156-1ca
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO/PN I+D/CTQ2016-78454-C2-1-Rca
dc.relation.projectIDinfo:eu-repo/grantAgreement/Fundació la Marató de TV3/grant no. 20133133ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

© L'autor/a
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint