Show simple item record

dc.contributorUniversitat Ramon Llull. La Salle
dc.contributor.authorBonet-Solà, Daniel
dc.contributor.authorVidaña Vila, Ester
dc.contributor.authorAlsina-Pagès, Rosa Ma
dc.date.accessioned2024-10-11T10:55:34Z
dc.date.available2024-10-11T10:55:34Z
dc.date.issued2023-12-31
dc.identifier.issn2084-879Xca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/4429
dc.description.abstractThere is an increasing concern about noise pollution around the world. As a first step to tackling the problem of deteriorated urban soundscapes, this article aims to develop a tool that automatically evaluates the soundscape quality of dwellings based on the acoustic events obtained from short videos recorded on-site. A sound event classifier based on a convolutional neural network has been used to detect the sounds present in those videos. Once the events are detected, our distinctive approach proceeds in two steps. First, the detected acoustic events are employed as inputs in a binary assessment system, utilizing logistic regression to predict whether the user’s perception of the soundscape (and, therefore, the soundscape quality estimator) is categorized as “comfortable” or “uncomfortable”. Additionally, an Acoustic Comfort Index (ACI) on a scale of 1–5 is estimated, facilitated by a linear regression model. The system achieves an accuracy value over 80% in predicting the subjective opinion of citizens based only on the automatic sound event detected on their balconies. The ultimate goal is to be able to predict an ACI on new locations using solely a 30-s video as an input. The potential of the tool might offer data-driven insights to map the annoyance or the pleasantness of the acoustic environment for people, and gives the possibility to support the administration to mitigate noise pollution and enhance urban living conditions, contributing to improved well-being and community engagement.ca
dc.format.extent18 p.ca
dc.language.isoengca
dc.publisherDe Gruyter Open Accessca
dc.relation.ispartofNoise Mappingca
dc.rightsAttribution 4.0 Internationalca
dc.rights© L'autor/aca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherCitizen scienceca
dc.subject.otherAcoustic event detectionca
dc.subject.otherNoiseca
dc.subject.otherAnnoyance evaluationca
dc.subject.otherAcoustic comfortca
dc.subject.otherSoundscapeca
dc.subject.otherConvolutional neural networksca
dc.subject.otherCiència ciutadanaca
dc.subject.otherDetecció d'esdeveniments acústicsca
dc.subject.otherSorollca
dc.subject.otherAvaluació de la molèstiaca
dc.subject.otherConfort acústicca
dc.subject.otherPaisatge sonorca
dc.subject.otherXarxes neuronals convolucionalsca
dc.titlePrediction of the acoustic comfort of a dwelling based on automatic sound event detectionca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc531/534ca
dc.subject.udc62ca
dc.identifier.doihttps://doi.org/10.1515/noise-2022-0177ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint