Mostra el registre parcial de l'element

dc.contributorUniversitat Ramon Llull. IQS
dc.contributor.authorMeca Cortés, Oscar
dc.contributor.authorGuerra Rebollo, Marta
dc.contributor.authorGarrido, Cristina
dc.contributor.authorBorrós i Gómez, Salvador
dc.contributor.authorRubio, Nuria
dc.contributor.authorBlanco, Jeronimo
dc.date.accessioned2024-09-13T12:36:07Z
dc.date.available2024-09-13T12:36:07Z
dc.date.issued2017-07-26
dc.identifier.issn2162-2531ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/4410
dc.description.abstractThe use of non-viral procedures, together with CRISPR/Cas9 genome-editing technology, allows the insertion of single-copy therapeutic genes at pre-determined genomic sites, overcoming safety limitations resulting from random gene insertions of viral vectors with potential for genome damage. In this study, we demonstrate that combination of non-viral gene delivery and CRISPR/Cas9-mediated knockin via homology-directed repair can replace the use of viral vectors for the generation of genetically modified therapeutic cells. We custom-modified human adipose mesenchymal stem cells (hAMSCs), using electroporation as a transfection method and CRISPR/Cas9-mediated knockin for the introduction and stable expression of a 3 kb DNA fragment including the eGFP (selectable marker) and a variant of the herpes simplex virus 1 thymidine kinase genes (therapeutic gene), under the control of the human elongation factor 1 alpha promoter in exon 5 of the endogenous thymidine kinase 2 gene. Using a U87 glioma model in SCID mice, we show that the therapeutic capacity of the new CRISPR/Cas9-engineered hAMSCs is equivalent to that of therapeutic hAMSCs generated by introduction of the same therapeutic gene by transduction with a lentiviral vector previously published by our group. This strategy should be of general use to other applications requiring genetic modification of therapeutic cells.ca
dc.format.extent9 p.ca
dc.language.isoengca
dc.publisherCell Pressca
dc.relation.ispartofMolecular Therapy: Nucleic Acidsca
dc.rights© L'autor/a*
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherCRISPR/Cas9ca
dc.subject.otherCell therapyca
dc.subject.otherMesenchymal stem cellsca
dc.subject.otherBystander suicide therapyca
dc.subject.otherGlioblastomaca
dc.subject.otherNon-invasive bioluminescence imagingca
dc.subject.otherCRISPR/Cas9 knockinca
dc.subject.otherCRISPR-Cas9ca
dc.subject.otherCRISPR (Genètica)ca
dc.subject.otherTeràpia cel·lularca
dc.subject.otherCèl·lules mare mesenquimàtiquesca
dc.subject.otherGlioblastoma multiformeca
dc.subject.otherImatgeria per al diagnòsticca
dc.subject.otherCRISPR (Genètica)ca
dc.titleCRISPR/Cas9-Mediated Knockin Application in Cell Therapy: A Non-viral Procedure for Bystander Treatment of Glioma in Miceca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc573ca
dc.subject.udc615ca
dc.identifier.doihttp://dx.doi.org/10.1016/j.omtn.2017.07.012
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO i FEDER/PN I+D/SAF2015-64927-C2-1-Rca
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO i FEDER/PN I+D/SAF2015-64927-C2-2-Rca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc-nd/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix