Mostra el registre parcial de l'element

dc.contributorUniversitat Ramon Llull. Facultat de Turisme i Direcció Hotelera Sant Ignasi
dc.contributorUniversitat Ramon Llull. La Salle
dc.contributorInstitut de Ciències de l'Espai
dc.creatorGarcía Piquer, Álvaro
dc.creatorSancho Asensio, Andreu
dc.creatorFornells Herrera, Albert
dc.creatorGolobardes, Elisabet
dc.creatorCorral Torruella, Guiomar
dc.creatorTeixidó Navarro, Francesc
dc.date.accessioned2019-10-15T11:04:30Z
dc.date.accessioned2024-07-19T07:42:45Z
dc.date.available2019-10-15T11:04:30Z
dc.date.available2024-07-19T07:42:45Z
dc.date.created2015-11
dc.date.issued2019-10
dc.identifier.urihttp://hdl.handle.net/20.500.14342/4322
dc.description.abstractThe massive generation of unlabeled data of current industrial applications has attracted the interest of data mining practitioners. Thus, retrieving novel and useful information from these volumes of data while decreasing the costs of manipulating such amounts of information is a major issue. Multiobjective clustering algorithms are able to recognize patterns considering several objective function which is crucial in real-world situations. However, they dearth from a retrieval system for obtaining the most suitable solution, and due to the fact that the size of Pareto set can be unpractical for human experts, autonomous retrieval methods are fostered. This paper presents an automatic retrieval system for handling Pareto-based multiobjective clustering problems based on the shape of the Pareto set and the quality of the clusters. The proposed method is integrated in CAOS, a scalable and flexible framework, to test its performance. Our approach is compared to classic retrieval methods that only consider individual strategies by using a wide set of artificial and real-world datasets. This filtering approach is evaluated under large data volumes demonstrating its competence in clustering problems. Experiments support that the proposal overcomes the accuracy and significantly reduces the computational time of the solution retrieval achieved by the individual strategieseng
dc.format.extent33 p.
dc.publisherElsevier
dc.relation.ispartofInformation Sciences, 2015, Vol. 320, No. 1 (November)
dc.rights© Elsevier. Tots els drets reservats
dc.sourceRECERCAT (Dipòsit de la Recerca de Catalunya)
dc.titleToward high performance solution retrieval in multiobjective clustering
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/submittedVersion


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix