Mostrar el registro sencillo del ítem

dc.contributorUniversitat Ramon Llull. La Salle
dc.contributor.authorValls, Francesc
dc.contributor.authorRedondo, Ernest
dc.contributor.authorFonseca, David
dc.contributor.authorTorres Kompen, Ricardo
dc.contributor.authorVillagrasa, Sergi
dc.contributor.authorMarti Audi, Nuria
dc.date.accessioned2023-12-15T21:15:54Z
dc.date.issued2018-07
dc.identifier.issn2772-5030ca
dc.identifier.urihttp://hdl.handle.net/20.500.14342/3670
dc.description.abstractThe configuration of urban projects using Information and Communication Technologies is an essential aspect in the education of future architects. Students must know the technologies that will facilitate their academic and professional development, as well as anticipating the needs of the citizens and the requirements of their designs. In this paper, a data mining approach was used to outline the strategic requirements for an urban design project in an architecture course using a Project-Based Learning strategy. Informal data related to an award-winning public space (Gillett Square in London, UK) was retrieved from two social networks (Flickr and Twitter), and from its official website. The analysis focused on semantic, temporal and spatial patterns, aspects generally overlooked in traditional approaches. Text-mining techniques were used to relate semantic and temporal data, focusing on seasonal and weekly (work-leisure) cycles, and the geographic patterns were extracted both from geotagged pictures and by geocoding user locations. The results showed that it is possible to obtain and extract valuable data and information in order to determine the different uses and architectural requirements of an urban space, but such data and information can be challenging to retrieve, structure, analyze and visualize. The main goal of the paper is to outline a strategy and present a visualization of the results, in a way designed to be attractive and informative for both students and professionals – even without a technical background – so the conducted analysis may be reproducible in other urban data contexts.ca
dc.format.extent14ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofTelematics and Informaticsca
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights© L'autor/a*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherArquitecturaca
dc.subject.otherArquitectura--Ensenyamentca
dc.subject.otherArquitectura--Innovacions tecnològiquesca
dc.subject.otherArquitectura--Projectesca
dc.subject.otherUrbanismeca
dc.subject.otherUrbanisme--Projectesca
dc.subject.otherTecnologia de la informacióca
dc.titleUrban data and urban design: A data mining approach to architecture educationca
dc.typeinfo:eu-repo/semantics/articleca
dc.rights.accessLevelinfo:eu-repo/semantics/embargoedAccess
dc.date.embargoEnd9999-01-01
dc.embargo.termsforeverca
dc.subject.udc004ca
dc.subject.udc71ca
dc.subject.udc72ca
dc.identifier.doihttps://doi.org/10.1016/j.tele.2017.09.015ca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca


Ficheros en el ítem

Este documento contiene ficheros embargados indefinidamente

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir